
Jinwoo Hwang
Daeun Kim Sangyeop Lee
Yoonsung Kim Guseul Heo
Hojoon Kim Yunseok Jeong
Tadiwos Meaza Eunhyeok Park†
Jeongseob Ahn‡ Jongse Park

Déjà Vu: Efficient Video-Language 
Query Engine with Learning-based

Inter-Frame Computation Reuse

KAIST

† POSTECH

‡ Korea University

0



Video data is exploding!

1
*Sandvine, The Global Internet Phenomena  Report (2024)
**IDC & Seagate, Rethink Data (2020)

Yet, they are underutilized,
68% of such unstructured data remain unused**.

Video data now makes up more than 54% the global IP traffic*.



Video Language Models (VideoLMs)

2

Retrieval Question Answering Question Grounding

“Scene of a Maltese
doing a trick”

“What trick does
the dog do?”

“Gives his paw” “Gives his paw
at 0:04 — 0:06”

“What trick does
the dog do?”

VideoLMs serve as a new powerful interface to video data.

Three representative VideoLM applications



Visual
Encoder

*FrozenBiLM

810G

Structure of Vision-Language Model

3

Multimodal
Language Model

Visual Encoder
(Vision Transformer)

81G

“Maltese.”

§ Vision-language model has two parts: visual encoder and language model.

“What breed
is the dog?”

Image

Language
Model

358G

Question Answering Model
FLOPs Breakdown



From Image to Video: Computational Shift

4

“What trick does
the dog do?” *FrozenBiLM

“Gives his paw.”

Multimodal
Language Model

Question Answering Model
FLOPs Breakdown

§ As for the videos, the visual encoder dominates the computation.

Visual Encoder
(Vision Transformer)

Language
Model

810G

370G

Visual
Encoder

Video



Vision Transformer (ViT) Architecture

5

Transformer Encoder

Transformer Encoder

Linear Projection

Transformer Encoder

Output Projection
Output
Feature

Class
Token

§ ViT works by splitting image into grid of patches and treating them as tokens.



Vision Transformer (ViT) Architecture

6

En
co

de
r

QKV Projection

Self-Attention

Feed Forward
Network

Transformer Encoder

Transformer Encoder

Linear Projection

Transformer Encoder

Output Projection
Output
Feature

Class
Token



Key Opportunity: Temporal Redundancy

7

§ Video data contains abundant temporally redundancy.

Previous Frame Current Frame



Key Opportunity: Temporal Redundancy

8

Previous Frame Current Frame

§ Many patches persist across frames as highlighted in blue



Key Opportunity: Temporal Redundancy

9

Frame reconstructed with reused patches

§ Core Idea: Reuse redundant computations from previous frame within ViT



10

Reuse Recompute
How do we decide

when to reuse or recompute?

Let the model learn
its own reuse decision.?



Reuse Target Identification

11

Targeting the most 
computation-heavy stages

QKV
Projection

Self
Attention

Feed Forward
Network

ViT FLOPs Breakdown
Bl

oc
k 

#N

QKV Projection

Self-Attention

Bl
oc

k 
#N

+1

Feed Forward Network

QKV Projection

Self-Attention

Feed Forward Network

0.8G

2.15G

0.4G

*ViT-large-patch14-336px, 80% reuse



Filtering and Restoration Stages

12

Bl
oc

k 
#N

QKV Projection

Self-Attention

Bl
oc

k 
#N

+1

Feed Forward Network

QKV Projection

Filtering

Self-Attention

Feed Forward Network

Restoration

QKV
Projection

Self
Attention

Feed Forward
Network

ViT FLOPs Breakdown

0.8G

2.15G

0.4G

Restoration stage after projection

Filtering stage before FFN

*ViT-large-patch14-336px, 80% reuse



Example Flow: First Frame without Reuse

13

Bl
oc

k 
#N

QKV Projection

Self-Attention

Bl
oc

k 
#N

+1
Feed Forward Network

QKV Projection

Filtering

Self-Attention

Feed Forward Network

Restoration

Cached
Activations

§ Initial frame: compute everything from 
scratch, no reuse yet.

§ Cache input activations before the FFN.

§ Cache output activations after QKV.



Example Flow: Other Frames with Reuse

14

Bl
oc

k 
#N

QKV Projection

Self-Attention

Bl
oc

k 
#N

+1
Feed Forward Network

QKV Projection

Filtering

Self-Attention

Feed Forward Network

Restoration

Cached
Activations

Inputs

1. Similarity Score

Tokens with similar 
inputs are more 

suitable for reuse.

Reuse decision made at filtering stage

2. Attention Score
Tokens with high 

attention are more 
likely to be 

recomputed.

These signals can conflict,
making reuse decisions non-trivial.

.9 .9 .8 .9 .7



Example Flow: Other Frames with Reuse

15

Decision Layer
Simple three-layer MLP learns 

how to weigh these factors

1 1 1 0 1

Bl
oc

k 
#N

QKV Projection

Self-Attention

Bl
oc

k 
#N

+1
Feed Forward Network

QKV Projection

Filtering

Self-Attention

Feed Forward Network

Restoration

Cached
Activations

Binary decision we call “Reuse Map”

Output

*Details for other inputs omitted from this talk.

Inputs
1. Similarity Score

Reuse decision made at filtering stage

2. Attention Score



Example Flow: Other Frames with Reuse

16

Bl
oc

k 
#N

QKV Projection

Self-Attention

Bl
oc

k 
#N

+1
Feed Forward Network

QKV Projection

Filtering

Self-Attention

Feed Forward Network

Restoration

Cached
Activations

*ViT-large-patch14-336px, 80% reuse

QKV
Projection

Self
Attention

Feed Forward
Network

ViT FLOPs Breakdown

Skip most computations

0.16G
0.43G0.4G



§ For reused tokens, we fetch and restore 
cached outputs from the previous frame.

§ Then, we update the cache for future 
reuse before moving to self-attention.

§ Each block repeats this process.

17

Bl
oc

k 
#N

Self-Attention

QKV Projection

Bl
oc

k 
#N

+1
Feed Forward Network

QKV Projection

Filtering

Self-Attention

Feed Forward Network

Restoration

Cached
Activations

Restoration

Filtering

Example Flow: Other Frames with Reuse



§ For reused tokens, we fetch and restore 
cached outputs from the previous frame.

§ Then, we update the cache for future 
reuse before moving to self-attention.

§ Each block repeats this process.

17

Bl
oc

k 
#N

Self-Attention

QKV Projection

Bl
oc

k 
#N

+1
Feed Forward Network

QKV Projection

Filtering

Self-Attention

Feed Forward Network

Restoration

Cached
Activations

Restoration

Filtering

Example Flow: Other Frames with Reuse

Less FLOPs ≠ Speedup



High GPU Utilization without Reuse

18

Frame 1

§ GPUs thrive on dense, well-batched matrix multiplications.

Bl
oc

k 
N

Bl
oc

k 
N

+1

Feed Forward Network

QKV Projection

Filtering

Restoration

CoreCoreCore

CoreCoreCore

Frame 2 Frame 3 Frame 4

Target

GPU



Low GPU Utilization Issue with Reuse

19

§ High reuse makes the workload sparse and hurts utilization.

Bl
oc

k 
N

Bl
oc

k 
N

+1

Feed Forward Network

QKV Projection

Filtering

Restoration

CoreCoreCore

CoreCoreCore

Frame 1 Frame 2 Frame 3 Frame 4

Target

GPU



Conventional Scheduling

20

§ Process each from through all layers before starting the next frame.

Frame T

Layer N

Layer 2

Frame T+1

Layer N

Layer 2

Frame T+2

Layer N

Layer 2

Frame T+3

Layer N

Layer 2

Layer 1 Layer 1 Layer 1 Layer 1



Layer-wise Scheduling

21

§ Staggering frames across layers to improve computational efficiency.

Frame T

Layer N

Layer 2

Layer 1

Frame T+1

Layer N

Layer 2

Layer 1

Frame T+2

Layer N

Layer 2

Layer 1

Frame T+3

Layer N

Layer 2

Layer 1



Sparse Computation Compaction

22

§ Staggering frames across layers to improve computational efficiency

Bl
oc

k 
N

Bl
oc

k 
N

+1

Feed Forward Network

QKV Projection

Filtering

Restoration

CoreCoreCore

CoreCoreCore

Frame 1 Frame 2 Frame 3 Frame 4

GPU

Target



More Details in the Paper!

23

ReuseViT Architecture
§ Frame Reordering
§ Dataflow
§ Decision Layer
§ Restoration Layer

Learning Objectives
§ Gumbel Softmax

Reparameterization
§ Dual Loss Term
§ Handling Error 

Accumulation

Inference Optimization
§ Layer-wise Scheduling
§ Cached Memory 

Compaction
§ Sparse Computation 

Compaction

Covered in today’s talk



Evaluation Methodology
End Models
§ Retrieval: CLIP4Clip
§ Question answering: FrozenBiLM
§ Question grounding: TempCLIP

24

Datasets
§ Retrieval: MSR-VTT
§ Question answering: How2QA
§ Question grounding: NExT-GQA

Baselines
§ Original ViT
§ DiffRate[1]

§ CMC[2]

§ Eventful[3]

Environments
§ Two Intel Xeon Gold 6226R
§ 192GB DRAM
§ Nvidia RTX 3090 GPU
§ Ubuntu 24.04 / CUDA 12.1 / PyTorch 2.1

[1] Chen et al., “DiffRate: Differentiable Compression Rate for Efficient Vision Transformers,” ICCV 2023.
[2] Song et al., “CMC: Video Transformer Acceleration via CODEC Assisted Matrix Condensing,” ASPLOS 2024.
[3] Dutson et al., “Eventful transformers: leveraging temporal redundancy in vision transformers,” ICCV 2023.



Trade-off Between Accuracy & Throughput

25

§ Best accuracy-throughput tradeoff across all three tasks
§ Up to 2.64× speedup within ~2% task error 

Better

Video Retrieval Video Question Answering Video Question Grounding



Deeper FLOPs Breakdown

26

Fixed reuse rate to 50% Fixed accuracy to 84.5%

§ ReuseViT experience small overhead (~4%) at same reuse rate.
§ Overhead is compensated by achieving higher reuse rate.



Additional Results

27

§ FLOPs-accuracy tradeoff

§Memory overhead analysis

§Ablation study for design and training

§Ablation study for inference optimization



28

Conclusion

§Déjà Vu
§ Algorithm-system co-designed solution to reuse 

computation with learning-based approach

§Contributions
§ Learns when to reuse FFN/QKV per token across frames
§ Trained to balance reuse rate and task accuracy
§ Efficient runtime via layer-wise scheduling and compaction

§Results
§ Outperforms every other prior baselines
§ Up to 2.64× speedup with ~2% accuracy drop


