Déjà Vu: Efficient Video-Language Query Engine with Learning-based Inter-Frame Computation Reuse

Jinwoo Hwang

Daeun Kim

Yoonsung Kim

Hojoon Kim

Tadiwos Meaza

Jeongseob Ahn‡

Sangyeop Lee

Guseul Heo

Yunseok Jeong

Eunhyeok Park†

Jongse Park

KAIST

† POSTECH

‡ Korea University

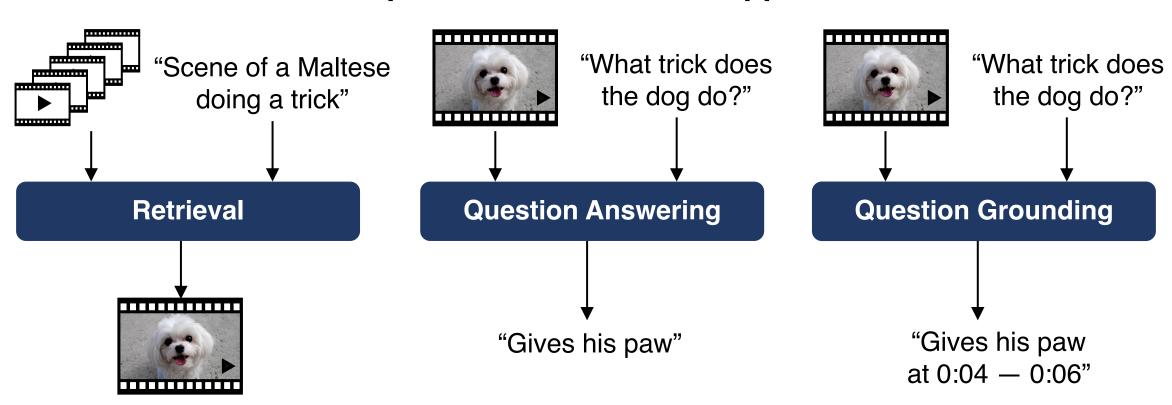
Video data is exploding!

Video data now makes up more than 54% the global IP traffic*.

Yet, they are underutilized, 68% of such unstructured data remain unused**.

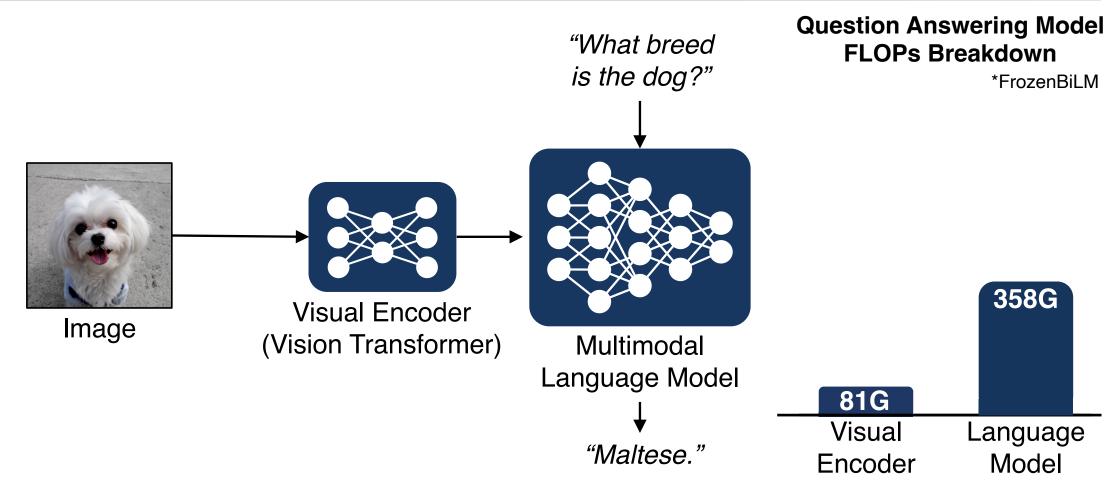
Video Language Models (VideoLMs)

Three representative VideoLM applications



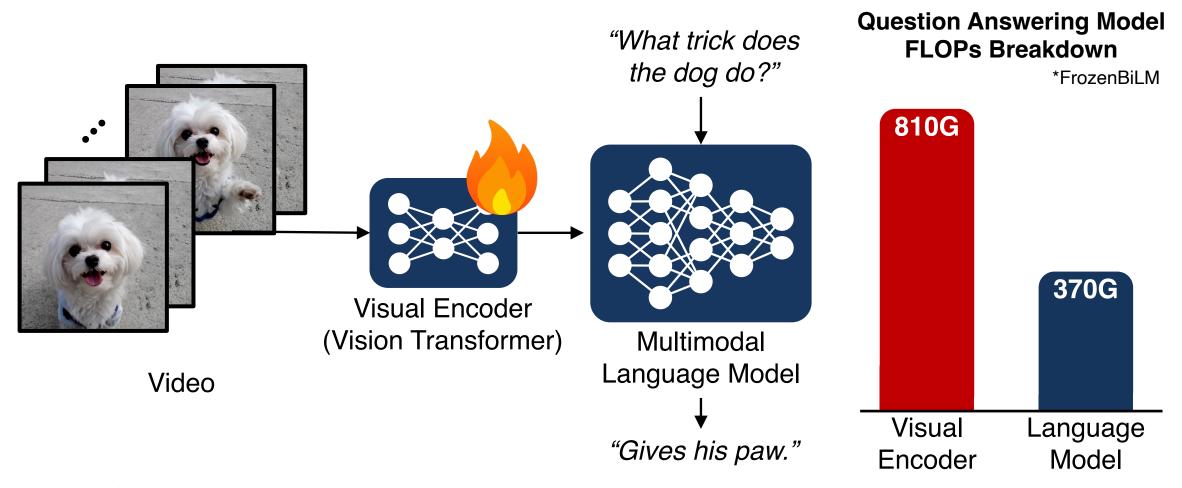
VideoLMs serve as a **new powerful interface** to video data.

Structure of Vision-Language Model



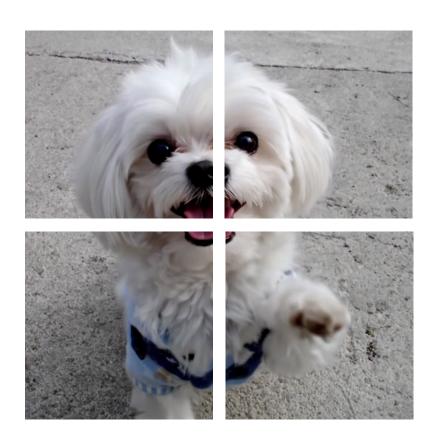
Vision-language model has two parts: visual encoder and language model.

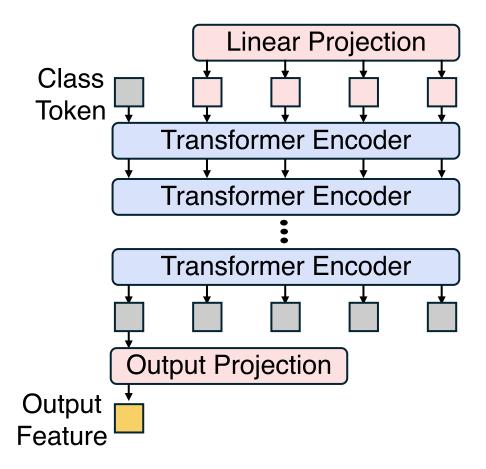
From Image to Video: Computational Shift



As for the videos, the visual encoder dominates the computation.

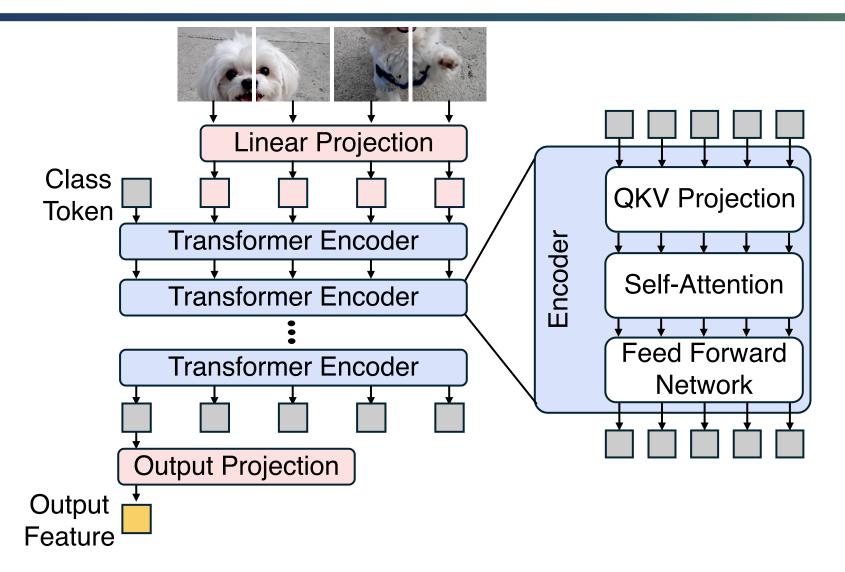
Vision Transformer (ViT) Architecture





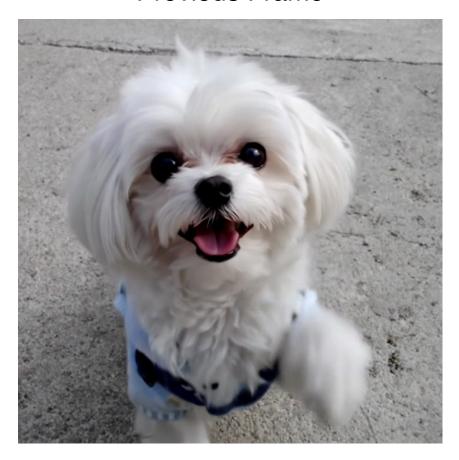
ViT works by splitting image into grid of patches and treating them as tokens.

Vision Transformer (ViT) Architecture

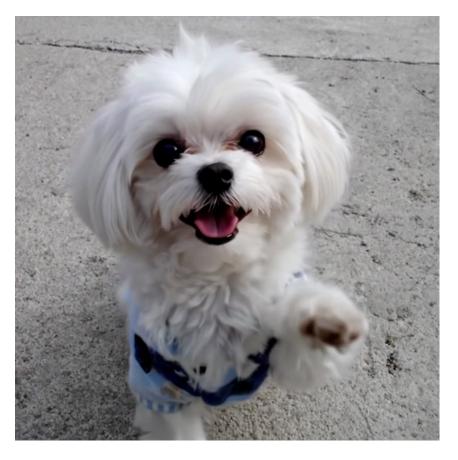


Key Opportunity: Temporal Redundancy

Previous Frame

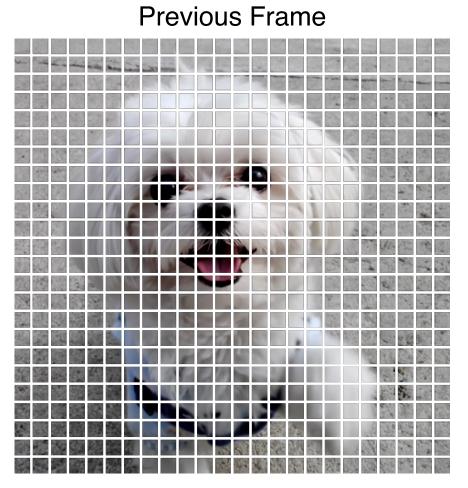


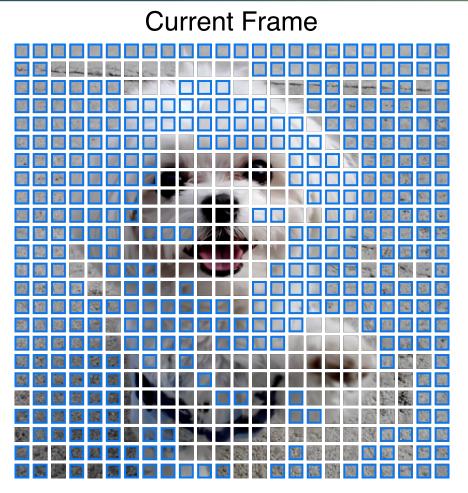
Current Frame



Video data contains abundant temporally redundancy.

Key Opportunity: Temporal Redundancy

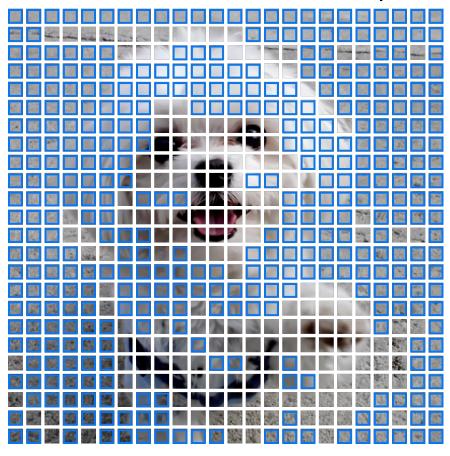




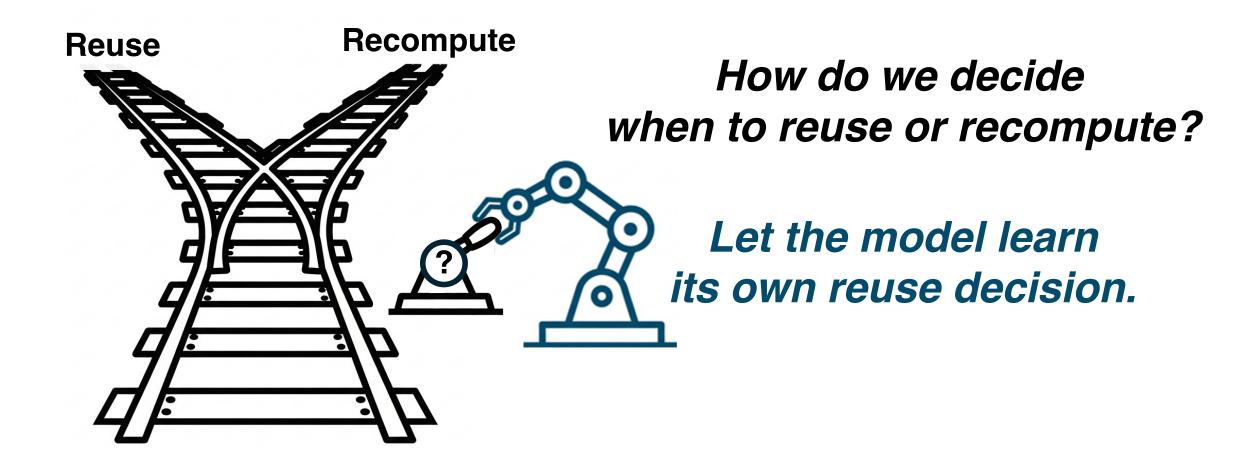
Many patches persist across frames as highlighted in blue

Key Opportunity: Temporal Redundancy

Frame reconstructed with reused patches



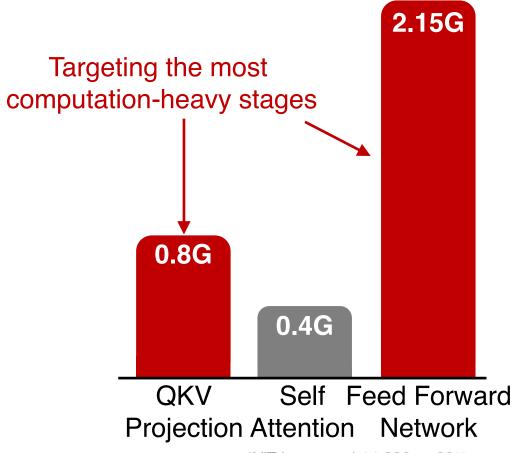
Core Idea: Reuse redundant computations from previous frame within ViT



Reuse Target Identification

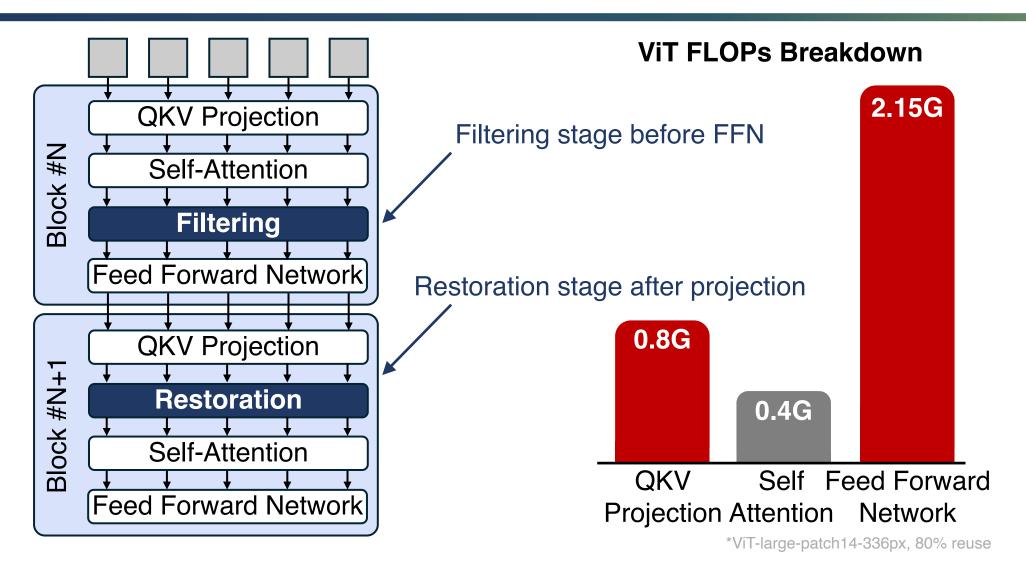
QKV Projection Z# Block **Self-Attention** Feed Forward Network **QKV** Projection Slock #N+1 **Self-Attention** Feed Forward Network

ViT FLOPs Breakdown

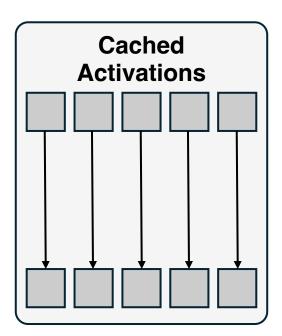


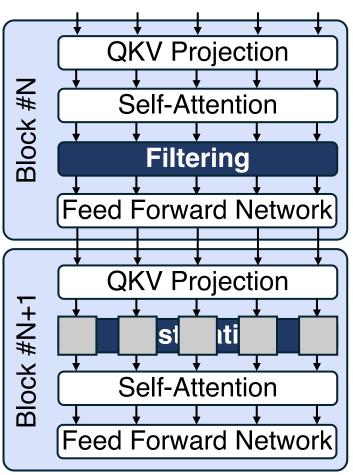
*ViT-large-patch14-336px, 80% reuse

Filtering and Restoration Stages



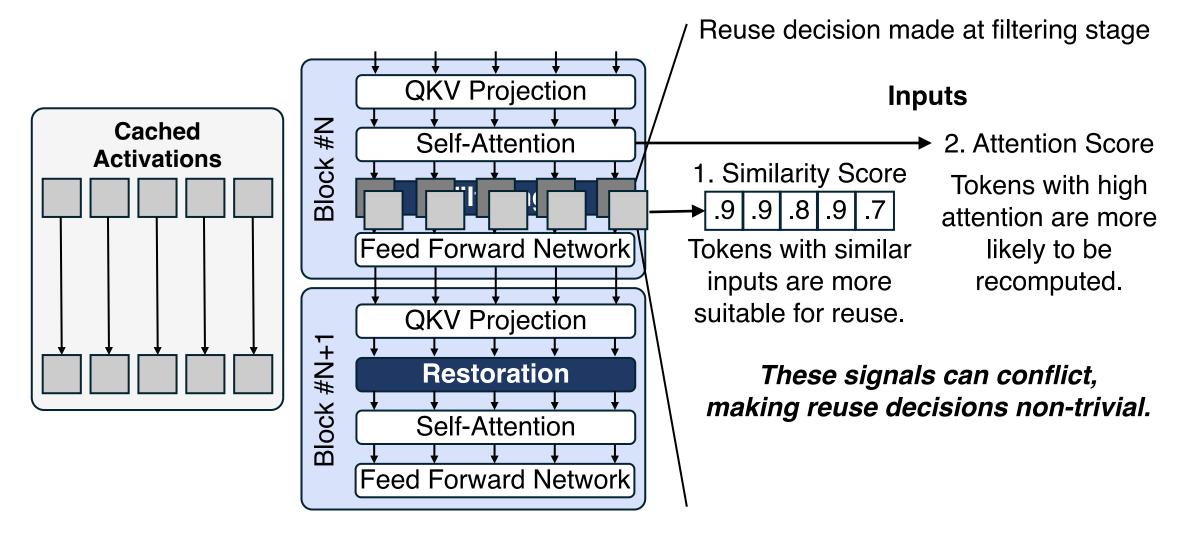
Example Flow: First Frame without Reuse

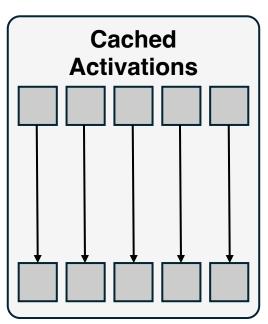


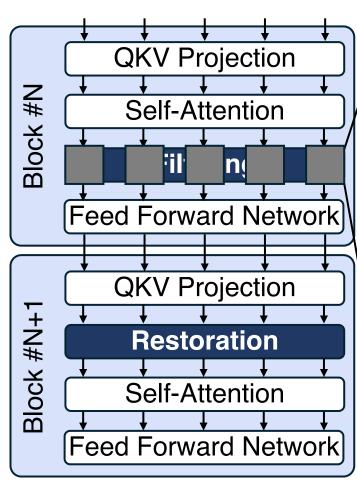


- Initial frame: compute everything from scratch, no reuse yet.
- Cache input activations before the FFN.

Cache output activations after QKV.







Reuse decision made at filtering stage **Inputs**

1. Similarity Score 2. Attention Score

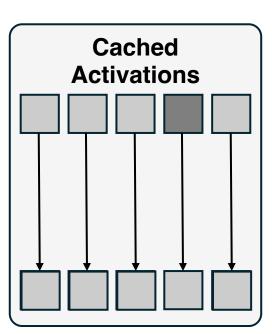
*Details for other inputs omitted from this talk.

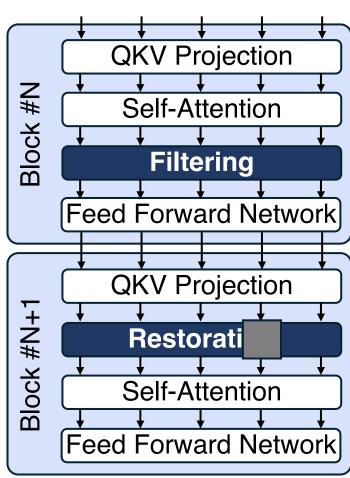
Decision Layer
Simple three-layer MLP learns
how to weigh these factors

Output

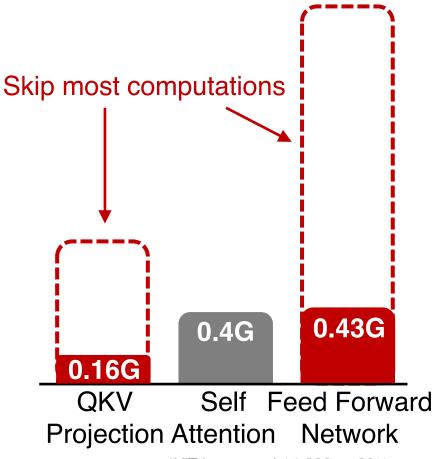
1 1 0 1

Binary decision we call "Reuse Map"



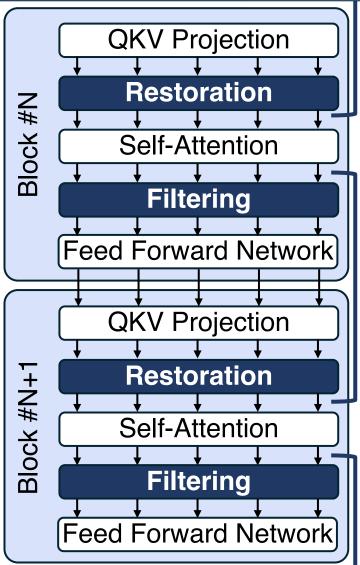


ViT FLOPs Breakdown



*ViT-large-patch14-336px, 80% reuse

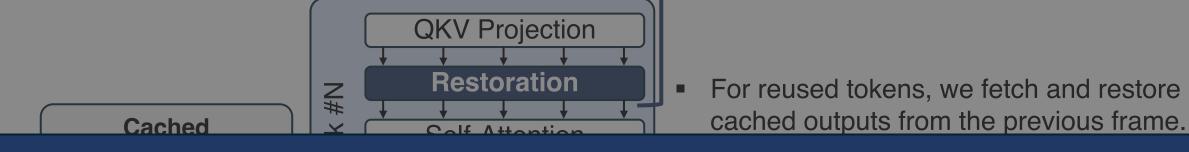




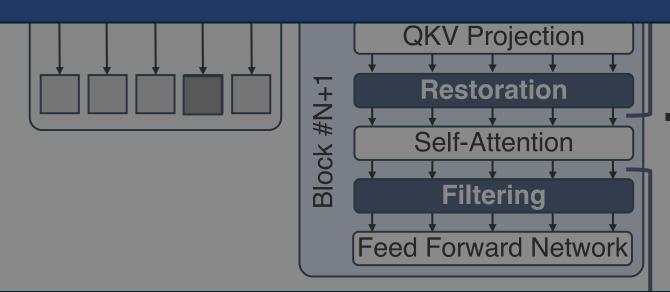
 For reused tokens, we fetch and restore cached outputs from the previous frame.

 Then, we update the cache for future reuse before moving to self-attention.

Each block repeats this process.

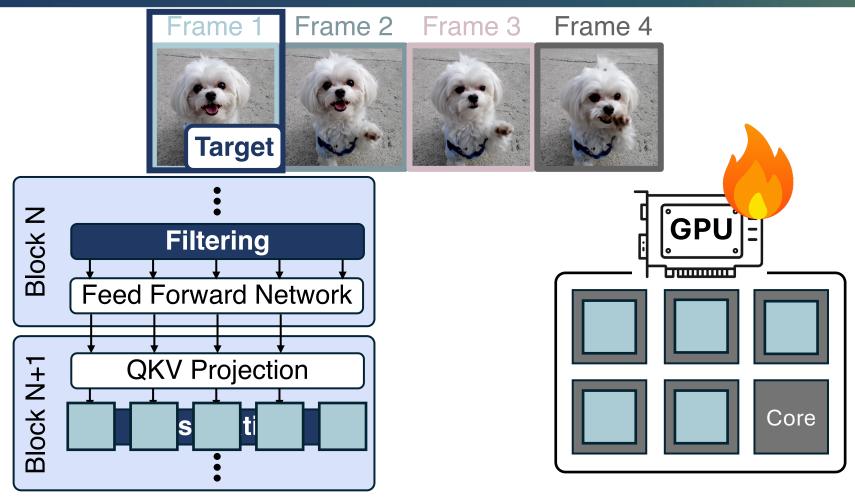


Less FLOPs ≠ Speedup



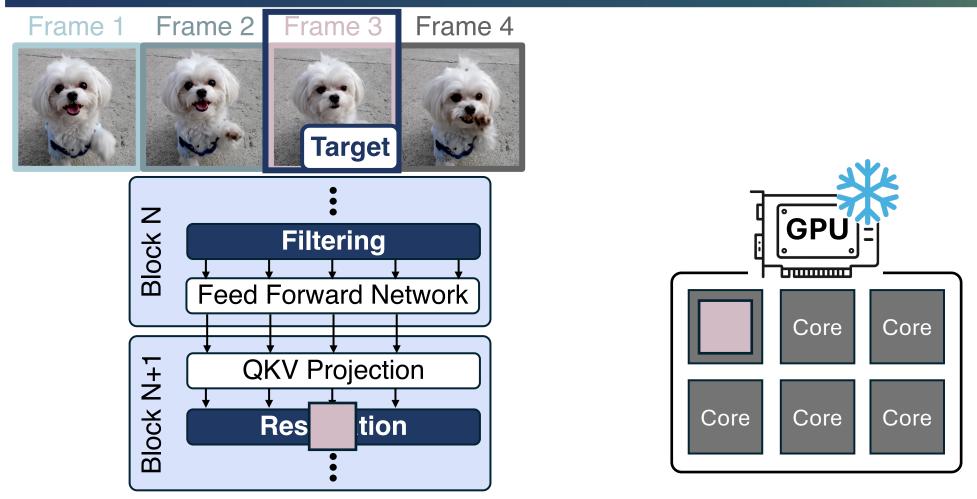
Each block repeats this process.

High GPU Utilization without Reuse



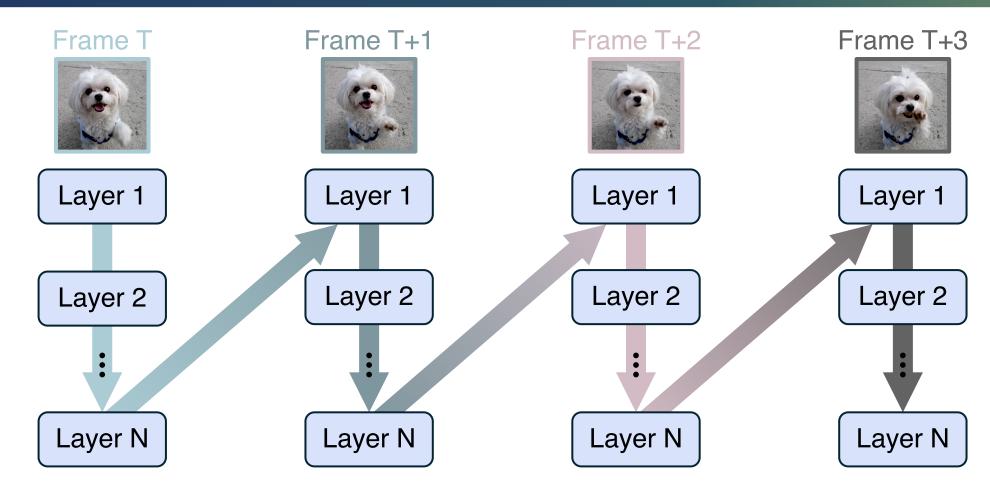
GPUs thrive on dense, well-batched matrix multiplications.

Low GPU Utilization Issue with Reuse



High reuse makes the workload sparse and hurts utilization.

Conventional Scheduling



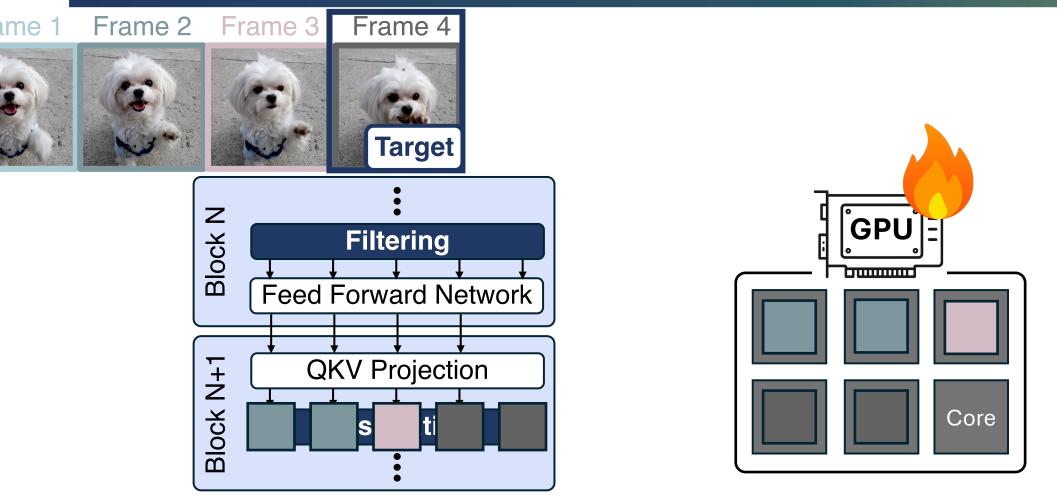
Process each from through all layers before starting the next frame.

Layer-wise Scheduling

Frame T Frame T+1 Frame T+2 Frame T+3 Layer 2 Layer 2 Layer 2 Layer 2 Layer N Layer N Layer N Layer N

Staggering frames across layers to improve computational efficiency.

Sparse Computation Compaction



Staggering frames across layers to improve computational efficiency

More Details in the Paper!

Evaluation Methodology

End Models

- Retrieval: CLIP4Clip
- Question answering: FrozenBiLM
- Question grounding: TempCLIP

Datasets

- Retrieval: MSR-VTT
- Question answering: How2QA
- Question grounding: NExT-GQA

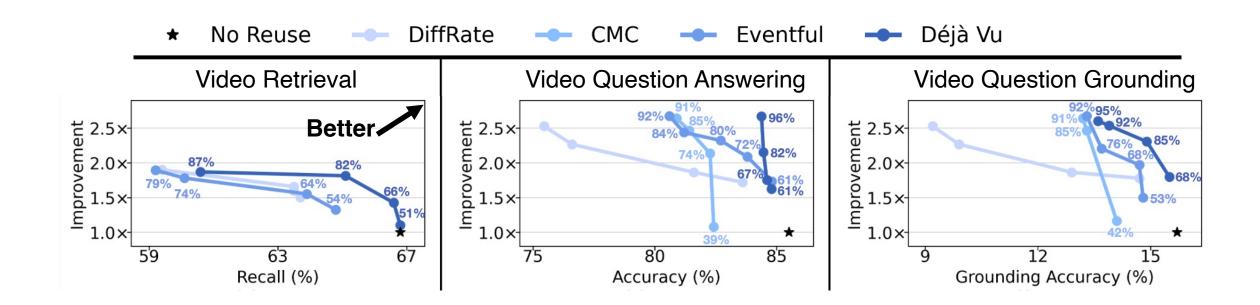
Baselines

- Original ViT
- DiffRate^[1]
- CMC^[2]
- Eventful^[3]

Environments

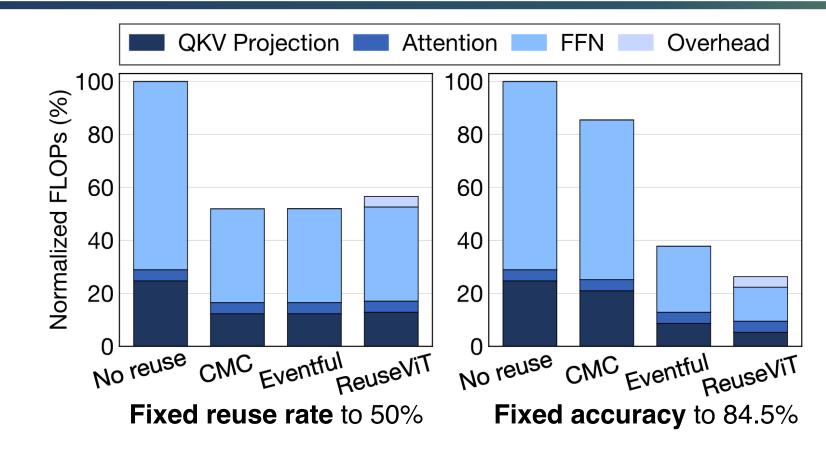
- Two Intel Xeon Gold 6226R
- 192GB DRAM
- Nvidia RTX 3090 GPU
- Ubuntu 24.04 / CUDA 12.1 / PyTorch 2.1
- [1] Chen et al., "DiffRate: Differentiable Compression Rate for Efficient Vision Transformers," ICCV 2023.
- [2] Song et al., "CMC: Video Transformer Acceleration via CODEC Assisted Matrix Condensing," ASPLOS 2024.
- [3] Dutson et al., "Eventful transformers: leveraging temporal redundancy in vision transformers," ICCV 2023.

Trade-off Between Accuracy & Throughput



- Best accuracy-throughput tradeoff across all three tasks
- Up to 2.64× speedup within ~2% task error

Deeper FLOPs Breakdown



- ReuseViT experience small overhead (~4%) at same reuse rate.
- Overhead is compensated by achieving higher reuse rate.

Additional Results

- FLOPs-accuracy tradeoff
- Memory overhead analysis
- Ablation study for design and training
- Ablation study for inference optimization

Conclusion

Déjà Vu

 Algorithm-system co-designed solution to reuse computation with learning-based approach

Contributions

- Learns when to reuse FFN/QKV per token across frames
- Trained to balance reuse rate and task accuracy
- Efficient runtime via layer-wise scheduling and compaction

Results

- Outperforms every other prior baselines
- Up to 2.64× speedup with ~2% accuracy drop

