
Accelerating
String-key Learned Index Structures via
Memoization-based Incremental Training

Minsu Kim

Jinwoo Hwang

Guseul Heo

Seiyeon Cho

Divya Mahajan†

Jongse Park

KAIST

Georgia Institute of Technology†

3 18 32 45 61 77 88 96

Learned Index Structure

2

Key-Value

Array

Index

Structure

Queried

Key

3 18 32 45 61 77 88 96

Traditional Index Structure Learned Index Structure

32

80

50

10 90

20

7040

32

Local Search

Predicted Idx: 1

Learned Index Structure

Traditional Index Learned Index

Time Complexity ▲ ▼

Performance ▼ ▲

Index Size ▲ ▼

3

▪ Example Applications

◦Database: BOURBON (2020)

Learned Bigtable (2020)

◦DNA Sequencing: BLESS (2024)

◦Embedded Sensor: SENSORNETS (2023)

Updatable Learned Index

4

Updatable learned indexes require periodic retraining using the entire keys

Buffer for

Inserted Keys

Key-Value Array

at Time t

Inserted Key

Machine Learning

Model at Time t

Model Retraining
Machine Learning

Model at Time t+1

Key-Value Array

at Time t+1

Performance of Updatable Indexes

0.0M

0.5M

1.0M

1.5M

2.0M

2.5M

3.0M

3.5M

A B C D E F

5

0M

5M

10M

15M

20M

25M

A B C D E F

Integer Keys String Keys

T
h
ro

u
g
h
p
u
t

(o
p
s/

se
c)

Wormhole Cuckoo Trie ALEX LIPP XIndex/SIndex

Read-only Workload Read-Write Workload

String-key learned indexes show poor performance for read-write workloads

Traditional Indexes Learned Indexes

* Used YCSB (Yahoo Cloud Serving Benchmark) workloads

0

100

200

300

400

0M 20M 40M 60M 80M 100M

16 32

64 96

Bottlenecks of Learned Index Training

Accumulated keys degrade the performance of learned index

by delaying updates of ML model

6

1. Bad scalability & performance due to accumulated keys

Total Number of Trained Keys

Tr
a
in

in
g
 T

im
e
 (

se
c)

0

100

200

300

400

0M 20M 40M 60M 80M 100M

16 32

64 96

Increasing Training Time Performance Degradation with Slow Training

Training Interval
P
e
rf

o
rm

an
ce

 D
e
g
ra

d
a
ti
o
n

Key Length

3%

11%

23%

0%

5%

10%

15%

20%

25%

30%

30s 100s 300s

(30% Insertion Ratio)

Bottlenecks of Learned Index Training

▪ Most learned indexes use linear regression for their ML model

▪ Solving linear regression involves QR decomposition

7

2. QR Decomposition Operations are Expensive

X (Matrix of keys) Y (Vector of positions)

β (Model weight)

#
 o

f
K
e
y
s

Key Length 1

β = 𝐑−𝟏𝐑−𝟏
𝐓
XTY

, where 𝐗 = 𝐐𝐑

Linear Regression Solution

Xβ = Y

Linear Regression Model

0%

20%

40%

60%

80%

100%

16 32 64 96

QR Decomposition R Inverse + GEMM

▪ QR decomposition is the major bottleneck when training

▪ R Inverse and GEMM are the second longest

Xβ = Y

Linear Regression Model

β = 𝐑−𝟏𝐑−𝟏
𝐓
XTY

, where 𝐗 = 𝐐𝐑

Linear Regression Solution

Bottlenecks of Learned Index Training

8

2. QR Decomposition Operations are Expensive

Key Length

P
e
rc

e
n
ta

g
e

37%

62%

83%
88%

1. Bad scalability & performance due to accumulated keys

2. QR decomposition operations are expensive

• QRD is a key operation in linear model training

• Existing learning algorithms require both old keys and new keys

Bottlenecks of Learned Index Training

9

Existing String-key Learned Index Systems

Offer Limited Performance

SIA: System Overview

① Algorithm that reuses memoized intermediate results

② Hardware that offloads index training with FPGA accelerator

10

Algorithm-Hardware Co-designed String-key Learned Index System

Modelt+1Modelt

CPU

Inference Thread Training Thread

Update

Rt

Modelt+1Modelt

Rt+1

CPU

key
Update

Memoize

Use
memoized

result

FPGA

key

Existing System SIA-accelerated System

* FPGA: Field Programmable Gate Array

Insight from Parallel QR Decomposition

▪ Existing parallel QRD offers advantage to tall-and-skinny matrices

▪ Parallel QRD ensures mathematical equivalence

11

X

X1

X2

X3

X4

Q1,1

Q1,2

Q1,3

Q1,4

R1,1

R1,2

R1,3

R1,4

×

×

×

×

1st QR 2nd QR

Q2,1
R2,1×

Q2,2
R2,2×

3rd QR

Q3,1
R×

concat

X Q

R×

concat

#
 o

f
K
e
y
s

Key Length

▪ Incremental index learning reduces costly QRD via memoization

XΔ QΔ RΔ×

Q Rnew×

Rold

Rtmp

concat

Algorithm Design

12

Incremental Index Learning

β = (𝐑−𝟏𝐑−𝟏
𝐓
)XTY where 𝐗 = 𝐐𝐑

Linear Regression Solution

Xold Qold ×

Memoized

U
p

d
a
te

d
K

e
y
s

O
ld

K
e
y
s

Result R Matrix
for
Entire Keys

Algorithm Design

▪ There is no need to perform QRD for entire key matrix

13

Incremental Index Learning

XΔ2 QΔ2
RΔ2×

Q2
R2×

2nd QRD

XΔ1 QΔ1
RΔ1×

Q1
R1×

1st QRD

X Q R×

0th QRD

R R1

=

X

XΔ1

XΔ2

Memoized QR Decomposition Naive QR Decomposition

Q × RR1

Q′

Q′′

R2

concat

concat

R∆1

0th QRD1st QRD2nd QRD

Memoized Memoized

0

100

200

300

400

0M 20M 40M 60M 80M 100M

16 32

64 96

Why Do We Need Hardware Acceleration?

14

Tr
a
in

in
g
 T

im
e
 (

se
c)

0M

2M

4M

6M

1 15

Total Number of Trained Keys

1 15

T
h
ro

u
g
h
p
u
t

(o
p
s/

se
c)

of Inference Threads # of Training Threads

Training Time with Incremental Learning Throughput with Varying CPU Threads

CPU-only solution is still slow due to low efficiency in training

Hardware Design

15

Hardware Selection: FPGA

◦Reconfigurable

Reprogrammable without changing hardware

◦Customizable

Programmable with user custom hardware logic

◦Parallelizable

Simultaneous operation of multiple logic blocks

◦Area & Energy Efficient

High performance at low operating costField Programmable Gate Array

Hardware Design

16

FPGA Accelerator Architecture

𝑥∆

FPGA accelerator calculates

𝜽 = 𝐑−𝟏𝐑−𝟏
𝐓

with incremental index learning

Inserted keys are

copied from host to

FPGA

QR decomposition is

done in QRD Unit

R∆
RoldMemoized matrix is

stored on FPGA DRAM

Memoized matrix is

reused at concat unit &

QRD Unit

Rtmp

Rnew

Result R is memorized

on FPGA DRAM, again

Rnew

Remaining calculation

is done on systolic array
θ

Calculation result is

returned to host CPU

β = (𝐑−𝟏𝐑−𝟏
𝐓
)XTY where 𝐗 = 𝐐𝐑

Linear Regression Solution

Evaluation Methodology

Dataset Workload

“amaz”
Amazon review dataset

YCSB – D
Read & Insert

queries

YCSB – E
Range & Insert

queries

“meme”
Memetracker dataset

“rand”
Randomly generated

strings

Twitter Cache Trace
12.2, 15.5, 31.1, 37.3

Twitter Cache Trace
12.2, 15.5, 31.1, 37.3

Read & Insert Queries

17

▪ Baselines

◦Wormhole[1]

◦Cuckoo Trie [1]

◦SIndex [2]

◦ALEX [2]

◦LIPP [2]

▪ FPGA

◦Intel Arria 10 GX-1150

(Synthesized to 272MHz)

[1] Traditional indexes
[2] Updatable learned indexes

Performance Evaluation

18

Twitter Cache Trace ClustersYCSB Workloads

Learned indexes with SIA shows an average of 2.9x throughput improvement

compared to learned indexes without SIA

0M

2M

4M

6M

8M

10M

12M

14M

D-rand D-amaz D-meme E-rand E-amaz E-meme
0M

1M

2M

3M

4M

5M

6M

7M

12.2 15.5 31.1 37.3

T
h
ro

u
g
h
p
u
t

(o
p
s/

se
c)

ALEX ALEX-SIA LIPP LIPP-SIA SIndex SIndex-SIA

Tree Traversal Hashing ML Inference Local Search Buffer Search Range Search

Latency Breakdown

0.0

0.5

1.0

1.5

2.0

2.5

Wormhole Cuckoo Trie SIndex SIndex-SIA

19

0.0

2.0

4.0

6.0

8.0

Wormhole Cuckoo Trie SIndex SIndex-SIA

10.7 27.3

La
te

n
cy

 (
u
s)

Learned Index with SIA benefits from reduced search time

due to “freshness” of learning model

YCSB - D YCSB - E

Energy Efficiency Evaluation

0

50

100

150

200

250

CPU

Idle

CPU

Infer

CPU

Train

Total CPU

Idle

CPU

Infer

GPU

Train

Total CPU

Idle

CPU

Infer

FPGA

Train

Total

SIndex-CPU SIndex-GPU SIndex-SIA

20

P
o
w

e
r

(W
)

Normalized
Performance

per Watt

SIndex-CPU 1.00x

SIndex-GPU 1.67x

SIndex-SIA 2.89x

SIndex-CPU SIndex-GPU SIndex-SIA

SIA achieves higher energy efficiency with low energy usage of FPGA

(28x less than NVIDIA RTX 2080 TI GPU)

Suitable for continuous retraining of learned index system

* CPU: Intel Xeon Gold 6226R
* GPU: NVIDIA RTX 2080 TI

More Results in Paper

▪ Hardware Resource Utilization

▪ Memory Consumption Comparison

▪ Ablation Study

▪ Throughput with Different Query Distribution

▪ Implication of Lazy Delete Query Handling

21

Conclusion

22

• SIA

◦ Algorithm-hardware co-designed string-key learned index system

• Contributions

◦ Identifies and mitigates bottleneck of current learned index structures

◦ Accelerates model retraining via memoization-based algorithmic approach

◦ FPGA-based hardware design further reducing the training time

• Results

◦ 2.9x higher throughput than learned indexes without SIA

	Slide 1: Accelerating String-key Learned Index Structures via Memoization-based Incremental Training
	Slide 2: Learned Index Structure
	Slide 3: Learned Index Structure
	Slide 4: Updatable Learned Index
	Slide 5: Performance of Updatable Indexes
	Slide 6: Bottlenecks of Learned Index Training
	Slide 7: Bottlenecks of Learned Index Training
	Slide 8: Bottlenecks of Learned Index Training
	Slide 9: Bottlenecks of Learned Index Training
	Slide 10: SIA: System Overview
	Slide 11: Insight from Parallel QR Decomposition
	Slide 12: Algorithm Design
	Slide 13: Algorithm Design
	Slide 14: Why Do We Need Hardware Acceleration?
	Slide 15: Hardware Design
	Slide 16: Hardware Design
	Slide 17: Evaluation Methodology
	Slide 18: Performance Evaluation
	Slide 19: Latency Breakdown
	Slide 20: Energy Efficiency Evaluation
	Slide 21: More Results in Paper
	Slide 22: Conclusion

