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Learned Index Structure

Traditional Index Learned Index

Time Complexity ▲ ▼

Performance ▼ ▲

Index Size ▲ ▼
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▪ Example Applications

◦Database: BOURBON (2020)

Learned Bigtable (2020)

◦DNA Sequencing: BLESS (2024)

◦Embedded Sensor: SENSORNETS (2023)



Updatable Learned Index
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Updatable learned indexes require periodic retraining using the entire keys
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Performance of Updatable Indexes
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String-key learned indexes show poor performance for read-write workloads

Traditional Indexes Learned Indexes

* Used YCSB (Yahoo Cloud Serving Benchmark) workloads
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Bottlenecks of Learned Index Training

Accumulated keys degrade the performance of learned index

by delaying updates of ML model
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1. Bad scalability & performance due to accumulated keys
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Bottlenecks of Learned Index Training

▪ Most learned indexes use linear regression for their ML model

▪ Solving linear regression involves QR decomposition
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2. QR Decomposition Operations are Expensive

X (Matrix of keys) Y (Vector of positions)

β (Model weight)
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QR Decomposition R Inverse + GEMM

▪ QR decomposition is the major bottleneck when training

▪ R Inverse and GEMM are the second longest

Xβ = Y

Linear Regression Model

β = 𝐑−𝟏𝐑−𝟏
𝐓
XTY

, where 𝐗 = 𝐐𝐑 

Linear Regression Solution

Bottlenecks of Learned Index Training
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2. QR Decomposition Operations are Expensive
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1. Bad scalability & performance due to accumulated keys

2. QR decomposition operations are expensive

• QRD is a key operation in linear model training

• Existing learning algorithms require both old keys and new keys

Bottlenecks of Learned Index Training
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Existing String-key Learned Index Systems

Offer Limited Performance



SIA: System Overview

① Algorithm that reuses memoized intermediate results

② Hardware that offloads index training with FPGA accelerator
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Algorithm-Hardware Co-designed String-key Learned Index System
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* FPGA: Field Programmable Gate Array



Insight from Parallel QR Decomposition

▪ Existing parallel QRD offers advantage to tall-and-skinny matrices

▪ Parallel QRD ensures mathematical equivalence
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▪ Incremental index learning reduces costly QRD via memoization
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Algorithm Design

12

Incremental Index Learning
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Algorithm Design

▪ There is no need to perform QRD for entire key matrix
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Incremental Index Learning
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Why Do We Need Hardware Acceleration?

14

Tr
a
in

in
g
 T

im
e
 (

se
c)

0M

2M

4M

6M

1 15

Total Number of Trained Keys

1 15

T
h
ro

u
g
h
p
u
t 

(o
p
s/

se
c)

# of Inference Threads # of Training Threads

Training Time with Incremental Learning Throughput with Varying CPU Threads

CPU-only solution is still slow due to low efficiency in training



Hardware Design

15

Hardware Selection: FPGA

◦Reconfigurable

Reprogrammable without changing hardware

◦Customizable

Programmable with user custom hardware logic

◦Parallelizable

Simultaneous operation of multiple logic blocks

◦Area & Energy Efficient

High performance at low operating costField Programmable Gate Array



Hardware Design
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FPGA Accelerator Architecture

𝑥∆

FPGA accelerator calculates 

𝜽 = 𝐑−𝟏𝐑−𝟏
𝐓

with incremental index learning

Inserted keys are 

copied from host to 

FPGA

QR decomposition is 

done in QRD Unit

R∆
RoldMemoized matrix is 

stored on FPGA DRAM

Memoized matrix is 

reused at concat unit & 

QRD Unit

Rtmp

Rnew

Result R is memorized 

on FPGA DRAM, again

Rnew

Remaining calculation 

is done on systolic array
θ

Calculation result is 

returned to host CPU

β = (𝐑−𝟏𝐑−𝟏
𝐓
)XTY where 𝐗 = 𝐐𝐑 

Linear Regression Solution



Evaluation Methodology

Dataset Workload
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▪ Baselines

◦Wormhole[1]

◦Cuckoo Trie [1]

◦SIndex [2]

◦ALEX [2]

◦LIPP [2]

▪ FPGA

◦Intel Arria 10 GX-1150

(Synthesized to 272MHz) 

[1] Traditional indexes
[2] Updatable learned indexes



Performance Evaluation
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Twitter Cache Trace ClustersYCSB Workloads

Learned indexes with SIA shows an average of 2.9x throughput improvement

compared to learned indexes without SIA
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Tree Traversal Hashing ML Inference Local Search Buffer Search Range Search

Latency Breakdown

0.0

0.5

1.0

1.5

2.0

2.5

Wormhole Cuckoo Trie SIndex SIndex-SIA

19

0.0

2.0

4.0

6.0

8.0

Wormhole Cuckoo Trie SIndex SIndex-SIA

10.7 27.3

La
te

n
cy

 (
u
s)

Learned Index with SIA benefits from reduced search time
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Energy Efficiency Evaluation

0

50

100

150

200

250

CPU

Idle

CPU

Infer

CPU

Train

Total CPU

Idle

CPU

Infer

GPU

Train

Total CPU

Idle

CPU

Infer

FPGA

Train

Total

SIndex-CPU SIndex-GPU SIndex-SIA

20

P
o
w

e
r 

(W
)

Normalized 
Performance 

per Watt

SIndex-CPU 1.00x

SIndex-GPU 1.67x

SIndex-SIA 2.89x

SIndex-CPU SIndex-GPU SIndex-SIA

SIA achieves higher energy efficiency with low energy usage of FPGA

(28x less than NVIDIA RTX 2080 TI GPU)

Suitable for continuous retraining of learned index system

* CPU: Intel Xeon Gold 6226R
* GPU: NVIDIA RTX 2080 TI



More Results in Paper

▪ Hardware Resource Utilization

▪ Memory Consumption Comparison

▪ Ablation Study

▪ Throughput with Different Query Distribution

▪ Implication of Lazy Delete Query Handling
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Conclusion
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• SIA

◦ Algorithm-hardware co-designed string-key learned index system

• Contributions

◦ Identifies and mitigates bottleneck of current learned index structures

◦ Accelerates model retraining via memoization-based algorithmic approach

◦ FPGA-based hardware design further reducing the training time

• Results

◦ 2.9x higher throughput than learned indexes without SIA
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