Accelerating String-key Learned Index Structures via Memoization-based Incremental Training

Minsu Kim

Jinwoo Hwang

Guseul Heo

Seiyeon Cho

Divya Mahajan[†]

Jongse Park

KAIST

Georgia Institute of Technology[†]

Learned Index Structure

Traditional Index Structure

32 50 20 80 10 40 70 90 3 18 32 45 61 77 88 96

Learned Index Structure

Queried

Key

Index

Structure

Key-Value

Array

Learned Index Structure

	Traditional Index	Learned Index
Time Complexity		
Performance		
Index Size		

Example Applications

O Database: BOURBON (2020)

Learned Bigtable (2020)

○ **DNA Sequencing**: BLESS (2024)

• Embedded Sensor: SENSORNETS (2023)

Updatable Learned Index

Updatable learned indexes require periodic retraining using the entire keys

Performance of Updatable Indexes

* Used YCSB (Yahoo Cloud Serving Benchmark) workloads

Read-only Workload

Read-Write Workload

String-key learned indexes show **poor performance** for **read-write workloads**

Bottlenecks of Learned Index Training

1. Bad scalability & performance due to accumulated keys

Accumulated keys **degrade the performance** of learned index by delaying updates of ML model

Increasing Training Time

Performance Degradation with Slow Training

Bottlenecks of Learned Index Training

2. QR Decomposition Operations are Expensive

- Most learned indexes use linear regression for their ML model
- Solving linear regression involves QR decomposition

Linear Regression Model

$$X\beta = Y$$

Linear Regression Solution

$$\beta = \left(\mathbf{R}^{-1}\mathbf{R}^{-1^{T}}\right)\mathbf{X}^{T}\mathbf{Y}$$
, where $\mathbf{X} = \mathbf{Q}\mathbf{R}$

Bottlenecks of Learned Index Training

2. QR Decomposition Operations are Expensive

- QR decomposition is the major bottleneck when training
- R Inverse and GEMM are the second longest

Linear Regression Model

$$X\beta = Y$$

Linear Regression Solution

$$\beta = \left(\mathbf{R}^{-1}\mathbf{R}^{-1^{T}}\right)\mathbf{X}^{T}\mathbf{Y}$$
, where $\mathbf{X} = \mathbf{Q}\mathbf{R}$

Existing String-key Learned Index SystemsOffer Limited Performance

SIA: System Overview

Algorithm-Hardware Co-designed String-key Learned Index System

- 1 Algorithm that reuses memoized intermediate results
- (2) Hardware that offloads index training with FPGA accelerator

10

Insight from Parallel QR Decomposition

- Existing parallel QRD offers advantage to tall-and-skinny matrices
- Parallel QRD ensures mathematical equivalence

Algorithm Design

Incremental Index Learning

Incremental index learning reduces costly QRD via memoization

Algorithm Design

Incremental Index Learning

■ There is no need to perform QRD for entire key matrix

Naive QR Decomposition

Memoized QR Decomposition

Why Do We Need Hardware Acceleration?

CPU-only solution is still slow due to low efficiency in training

Training Time with Incremental Learning

Throughput with Varying CPU Threads

Hardware Design

Hardware Selection: FPGA

Hardware Design

FPGA Accelerator Architecture

Linear Regression Solution

$$\beta = (\mathbf{R}^{-1}\mathbf{R}^{-1}^{\mathrm{T}})\mathbf{X}^{\mathrm{T}}\mathbf{Y}$$
 where $\mathbf{X} = \mathbf{Q}\mathbf{R}$

FPGA accelerator calculates $\theta = \left(\mathbf{R}^{-1}\mathbf{R}^{-1^{\mathrm{T}}}\right)$

with incremental index learning

Calculation result is returned to host CPU

Evaluation Methodology

Baselines

- Wormhole^[1]
- Cuckoo Trie [1]
- ○SIndex ^[2]
- OALEX [2]
- LIPP [2]
- [1] Traditional indexes
- [2] Updatable learned indexes

FPGA

Intel Arria 10 GX-1150(Synthesized to 272MHz)

Dataset	Workload	
"amaz" Amazon review dataset		
" <i>meme"</i> Memetracker dataset	YCSB – D Read & Insert queries	YCSB – E Range & Insert queries
"rand" Randomly generated strings		·
Twitter Cache Trace 12.2, 15.5, 31.1, 37.3	Twitter Cache Trace 12.2, 15.5, 31.1, 37.3 Read & Insert Queries	

Performance Evaluation

Learned indexes with SIA shows an average of **2.9x throughput improvement** compared to learned indexes without SIA

Latency Breakdown

Learned Index with SIA benefits from **reduced search time** due to "freshness" of learning model

Energy Efficiency Evaluation

	Normalized Performance per Watt
SIndex-CPU	1.00x
SIndex-GPU	1.67x
SIndex-SIA	2.89x

* CPU: Intel Xeon Gold 6226R

* GPU: NVIDIA RTX 2080 TI

SIA achieves higher energy efficiency with **low energy usage of FPGA**(28x less than NVIDIA RTX 2080 TI GPU)

Suitable for continuous retraining of learned index system

More Results in Paper

- Hardware Resource Utilization
- Memory Consumption Comparison
- Ablation Study
- Throughput with Different Query Distribution
- Implication of Lazy Delete Query Handling

Conclusion

SIA

Algorithm-hardware co-designed string-key learned index system

Contributions

- Identifies and mitigates bottleneck of current learned index structures
- Accelerates model retraining via memoization-based algorithmic approach
- FPGA-based hardware design further reducing the training time

Results

2.9x higher throughput than learned indexes without SIA