DaCapo: Accelerating Continuous Learning
in Autonomous Systems for Video Analytics

Yoonsung Kim
Changhun Oh
Jinwoo Hwang
Wonung Kim
Seongryong Oh
Yubin Lee

Hardik Sharmat*
Amir Yazdanbakhsh*
Jongse Park

KAIST

T*Meta 00 MetCI
$Google DeepMind GOOQI€
@ DeepMind

On-Device AI:
Local Intelligence for Autonomous Systems

Mobile Device

The autonomous system market is expected to
grow to $28.5 billion by 2028
with an annual growth rate of 43.0%"

@ On-Device AI Chips in industry

' -9
\
UAV System \ n 1 ’ Robotics

T &G

@ SNMSUNG
Qualcomm

Surveillance Autonomous
System Vehicle

'l"
= \\
ﬁn
l-"-’ 4

t

Deployment of On-Device Al

Considerations of Inherent Features: Data Drift and Model Capacity

= Data drift: Changes of input data distribution
= On-device DNNs are lightweight due to constrained resources

Input data distribution changes over time On-device DNNs have low model capacity

s L 3 t
7,!"1 C z A #
w Fel .44 5= .
)

Server-Level GPU

B

On-Device

On-device DNNs are sensitive to data drift due to low model capacity

On-Device DNNs Suffer from Data Drift

Accuracy degradation from data drift
100

Accuracy (%

90

o1 O N O
© O O O

> Data Drift

\/\/\/\N

t, t, t, t3 t, to to
Time

Solution

»

Runtime DNN adaptation

Retrain DNN over time

Existing Solution: Continuous Learning

= Continuous learning (CL): Keep retraining DNN model over time
O Recent advances in systems and architecture [NSDI'22,23, MM'23, ASPLOS"24, HPCA'24]

Streaming
input data
[
Retraining
process
Stay updated with
the latest data trends
Inference

results

Workflow of Continuous Learning

Inference

Inference
Data

Sampler

‘ Retraining

. E——

3250

Retraining
Data
Sampler

i!-' ! ssi
Retraining Dataset

—>

Labeling

Workflow of Continuous Learning

Inference

———

Problems of CL with GPU server:

(1) Privacy, (2) network availability, and (3) latency concerns

We aim to build on-device continuous learning system

Retraining Data l\ : 4 Schedule CL workloads[1:2:3]

-—eem e e wl - e = -

Challenges of On-Device CL System

Challenge 1:
How to share resource across kernels?

Inference Retraining

Labeling

F.@|| O C'»

Challenge 3:
How to achieve efficient CL system?

Performance

Challenge 2:
How to schedule retraining & labeling?

Accuracy (%)

Accuracy
Improvement

Time

Challenge 1: Resource Sharing

Executing Three Key Kernels Using On-Device Resources

= Naive solution: Time-sharing across kernels
= Problem: Different computational demands between kernels

On-Device
NPU

Labehng

Inference Retraining

Temporal

Shanng

Three main CL kernels Resource |neff|C|ency occurs

Solution: Spatial Partitioning

Vertically Partitionable
Systolic Array

Input Buffer

Top-Sub

» Accelerator

(T-SA)

Bottom-Sub

» Accelerator
(B-SA)

*
“

Allocate

Retraining Labeling

Leverage large HW resource
for model adaptation kernels

Inference

v Allocate minimal HW resource
to satisfy FPS requirements

Challenge 2: Resource Scheduling
Scheduling Retraining and Labeling Kernels for Model Adaptation

Schedule time resources for kernels

Top-Sub |
Accelerator i ¢
(T'SA) TimeRetrain TimeLabeI

o)
L
Q)
=
=
Q
—
Q
o
@
=
Q
14
3
]
]

-
~

: 5 Resource scheduling affects
g TTTPPPPREERE PR ERRRRARTE accuracy improvement

PE [—9>{ PE [PE [-3{ PE| [Inference J
............................. R
Bottom-Sub Time
Accelerator
(B-SA)

10

Solution: Fine-Grained Retraining and Labeling

* Frequent model adaptation intervals
= Data drift detection by monitoring accuracy
= Additional labeling at data drift

Monitor accuracy Data drift
N ; Additional
| <" labeling
e N () e a Y4 Y1 ([N (i [N
R | Retraining | i
— R L - | R L |i| R L 1] L
L | Labeling | :
— _ VAN y, _ J \ y, E _ J \ y, E _ J
Short period of retraining and labeling Sl | Inference)
for adapting model >

Time
11

Challenge 3: Resource-Constrained System

= On-device resources hinders optimal performance of CL system
= Inefficiency of CL system degrades adaptability to data drift

e b

- 5 (B

CL system on limited resources Low performance and adaptability

We need to design performant and effective on-device CL system

12

Solution: Flexible Low-Precision Arithmetic
Dynamic Quantization Using Block Floating Point (BFP) Format

Different precision levels suitable for each kernel
Quantization

4 N i .)

. v, N\ Retraining 5 Leelinyg Inference
et — Op M

- BB BER

N J i\l Y

Achieving faster responses from Higher precision (MX9) Lower precision (MX6)

retraining and labeling kernels
*Use Microsoft MX, a variant of BFP formats

13

Microarchitecture for Dynamic Precisions

= Reconfigurable PEs supporting two different precisions

Systolic Array |

r

.

]
E
5
@
el
=
2
o
e

Weight/Output Buffer

Weight/Output Buffer

J

2-Bit MuItiP_I[g[' —

—>
—>

Hierarchical MAC units
4-Bit Multiplier

2-Bit
Mult.

8-Bit Multiplier -~

).
s

=D,

>
=

v oW

>
>
=

/ P
_-
7| _--
// -
/ _-
/ _-
-

T—
B i)
[—

O

FP32 Generator

MXO9 (8-bit)

Reconfigure
t Mx6 (4-bit)

-

_

Retraining

|
Labeling i
|
|

Inference

MX6 (4-bit)

Reconfigure

Time

*More details in paper

14

Evaluation Methodology

Dataset Baselines
= BDD100K driving dataset = Ekyall]
= EOMUI2]

*Both baselines target high-performance GPU systems

Scenario Cycle-accurate simulator
= A series of frames from BDD100K = DaCapo system simulator: modified SCALE-Sim
= Real-world datasets with data drifts = RTL synthesis and verification

O Using Synopsys Design Compiler and CACTI

[1] Bhardwaj et al., “Ekya: Continuous Learning of Video Analytics Models on Edge Compute Servers,” NSDI 2022
[2] Kong et al., “"Edge-Assisted On-Device Model Update for Video Analytics in Adverse Environments,” MM 2023 15

End-to-End Accuracy

= 90

S O Ekya B EOMU B DaCapo

= 85

&

= 80

3 75

<

S 70

o

5 69

£ 60
s1 | s2 | s3 | s4 [MEAN| o1 | s2 | 83 | s4 |MEAN| s1 | s2 | 83 | s4 |MEAN
ResNet18 & WideResNet50 ViT-B/32 & ViT-B/16 ResNet34 & WideResNet101

= DaCapo achieves optimal performance under on-device resources
= 6.5%0 and 5.5%0 higher accuracy than Ekya and EOMU, respectively

16

Inference Accuracy Over Time
ResNet18 & WideResNet50 Comparing to Baselines

’3100 < Data Dirift < Data Drift

S 90 S—

S 80 >

O []

< ©0 O ¢ == DaCapo
50 -

o Time
<—» : Allocate more labeling time

= Baselines struggle with data drifts, showing low accuracy trends
= DaCapo recovers accuracy from data drifts by adequate scheduling

17

Additional Results in Paper

.
C ¢ %
-t 9
Analysis of Extreme Data Drift
Scheduling Decision Evaluation

Power/Area Analysis

5.99%0b accuracy improvement 7.6%0 higher accuracy 256X less power consumption

18

= DaCapo

o On-device CL acceleration solution for autonomous systems

= Contributions
o Spatially partitionable systolic array architecture E
o Fine-grained resource scheduling to handle data drift 'y’
o PE microarchitecture using flexible low-precision arithmetic

[=] b

" Result DaCapo is available!

o 6.5% and 5.5% higher accuracy than
GPU-based CL solutions, Ekya and EOMU, respectively

19

	Title
	Slide 0

	Introduction - Challenge
	Slide 1
	Slide 2: Deployment of On-Device AI
	Slide 3: On-Device DNNs Suffer from Data Drift
	Slide 4: Existing Solution: Continuous Learning
	Slide 5: Workflow of Continuous Learning
	Slide 6: Workflow of Continuous Learning
	Slide 7: Challenges of On-Device CL System

	DaCapo
	Slide 8: Challenge 1: Resource Sharing
	Slide 9: Solution: Spatial Partitioning
	Slide 10: Challenge 2: Resource Scheduling
	Slide 11: Solution: Fine-Grained Retraining and Labeling
	Slide 12: Challenge 3: Resource-Constrained System
	Slide 13: Solution: Flexible Low-Precision Arithmetic
	Slide 14: Microarchitecture for Dynamic Precisions

	Evaluation
	Slide 15: Evaluation Methodology
	Slide 16: End-to-End Accuracy
	Slide 17: Inference Accuracy Over Time
	Slide 18: Additional Results in Paper

	Conclusion
	Slide 19

