DaCapo: Accelerating Continuous Learning
in Autonomous Systems for Video Analytics

Yoonsung Kim
Changhun Oh
Jinwoo Hwang
Wonung Kim
Seongryong Oh
Yubin Lee

Hardik Sharmat*
Amir Yazdanbakhsh*
Jongse Park

KAIST

T*Meta 00 MetCI
$Google DeepMind GOOQI€
@ DeepMind



On-Device AI:
Local Intelligence for Autonomous Systems

Mobile Device

The autonomous system market is expected to
grow to $28.5 billion by 2028
with an annual growth rate of 43.0%"

@ On-Device AI Chips in industry

' -9
\
UAV System \ n 1 ’ Robotics

T &G

@ SNMSUNG
Qualcomm

Surveillance Autonomous
System Vehicle

'l"
= \\
ﬁn
l-"-’ 4

t



Deployment of On-Device Al

Considerations of Inherent Features: Data Drift and Model Capacity

= Data drift: Changes of input data distribution
= On-device DNNs are lightweight due to constrained resources

Input data distribution changes over time On-device DNNs have low model capacity
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On-device DNNs are sensitive to data drift due to low model capacity




On-Device DNNs Suffer from Data Drift

Accuracy degradation from data drift
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Existing Solution: Continuous Learning

= Continuous learning (CL): Keep retraining DNN model over time
O Recent advances in systems and architecture [NSDI'22,23, MM'23, ASPLOS"24, HPCA'24]
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Workflow of Continuous Learning
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Workflow of Continuous Learning

Inference
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Problems of CL with GPU server:

(1) Privacy, (2) network availability, and (3) latency concerns

We aim to build on-device continuous learning system

Retraining Data l\ : 4 Schedule CL workloads[1:2:3]
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Challenges of On-Device CL System

Challenge 1:
How to share resource across kernels?
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Labeling
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Challenge 3:
How to achieve efficient CL system?

Performance

Challenge 2:
How to schedule retraining & labeling?
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Challenge 1: Resource Sharing

Executing Three Key Kernels Using On-Device Resources

= Naive solution: Time-sharing across kernels
= Problem: Different computational demands between kernels
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Solution: Spatial Partitioning

Vertically Partitionable
Systolic Array
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Challenge 2: Resource Scheduling
Scheduling Retraining and Labeling Kernels for Model Adaptation

Schedule time resources for kernels
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Solution: Fine-Grained Retraining and Labeling

* Frequent model adaptation intervals
= Data drift detection by monitoring accuracy
= Additional labeling at data drift
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Challenge 3: Resource-Constrained System

= On-device resources hinders optimal performance of CL system
= Inefficiency of CL system degrades adaptability to data drift
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CL system on limited resources Low performance and adaptability

We need to design performant and effective on-device CL system
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Solution: Flexible Low-Precision Arithmetic
Dynamic Quantization Using Block Floating Point (BFP) Format

Different precision levels suitable for each kernel
Quantization
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Achieving faster responses from Higher precision (MX9) Lower precision (MX6)

retraining and labeling kernels
*Use Microsoft MX, a variant of BFP formats
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Microarchitecture for Dynamic Precisions

= Reconfigurable PEs supporting two different precisions
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*More details in paper
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Evaluation Methodology

Dataset Baselines
= BDD100K driving dataset = Ekyall]
= EOMUI2]

*Both baselines target high-performance GPU systems

Scenario Cycle-accurate simulator
= A series of frames from BDD100K = DaCapo system simulator: modified SCALE-Sim
= Real-world datasets with data drifts = RTL synthesis and verification

O Using Synopsys Design Compiler and CACTI

[1] Bhardwaj et al., “Ekya: Continuous Learning of Video Analytics Models on Edge Compute Servers,” NSDI 2022
[2] Kong et al., “"Edge-Assisted On-Device Model Update for Video Analytics in Adverse Environments,” MM 2023 15



End-to-End Accuracy
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= DaCapo achieves optimal performance under on-device resources
= 6.5%0 and 5.5%0 higher accuracy than Ekya and EOMU, respectively
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Inference Accuracy Over Time
ResNet18 & WideResNet50 Comparing to Baselines
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= Baselines struggle with data drifts, showing low accuracy trends
= DaCapo recovers accuracy from data drifts by adequate scheduling
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Additional Results in Paper

.
C ¢ %
-t 9
Analysis of Extreme Data Drift
Scheduling Decision Evaluation

Power/Area Analysis

5.99%0b accuracy improvement 7.6%0 higher accuracy 256X less power consumption
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= DaCapo

o On-device CL acceleration solution for autonomous systems

= Contributions
o Spatially partitionable systolic array architecture E
o Fine-grained resource scheduling to handle data drift 'y’
o PE microarchitecture using flexible low-precision arithmetic
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" Result DaCapo is available!

o 6.5% and 5.5% higher accuracy than
GPU-based CL solutions, Ekya and EOMU, respectively
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