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ABSTRACT

Learned indexes use machine learning models to learn the map-
pings between keys and their corresponding positions in key-value
indexes. These indexes use the mapping information as training
data. Learned indexes require frequent retrainings of their mod-
els to incorporate the changes introduced by update queries. To
e�ciently retrain the models, existing learned index systems often
harness a linear algebraic QR factorization technique that performs
matrix decomposition. This factorization approach processes all
key-position pairs during each retraining, resulting in compute
operations that grow linearly with the total number of keys and
their lengths. Consequently, the retrainings create a severe perfor-
mance bottleneck, especially for variable-length string keys, while
the retrainings are crucial for maintaining high prediction accuracy
and in turn, ensuring low query service latency.

To address this performance problem, we develop an algorithm-
hardware co-designed string-key learned index system, dubbed
SIA. In designing SIA, we leverage a unique algorithmic property
of the matrix decomposition-based training method. Exploiting
the property, we develop a memoization-based incremental train-
ing scheme, which only requires computation over updated keys,
while decomposition results of non-updated keys from previous
computations can be reused. We further enhance SIA to o�oad a
portion of this training process to an FPGA accelerator to not only
relieve CPU resources for serving index queries (i.e., inference),
but also accelerate the training itself. Our evaluation shows that
compared to ALEX, LIPP, and SIndex, a state-of-the-art learned
index systems, SIA-accelerated learned indexes o�er 2.6× and 3.4×
higher throughput on the two real-world benchmark suites, YCSB
and Twitter cache trace, respectively.
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Figure 1: Increasing retraining time as the size of a learned in-

dex system grows, resulting from a stream of update queries.

Markers on the same line represent sequential retraining

runs, where leftward markers precede those on the right.
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1 INTRODUCTION

Machine learning for system infrastructure is growing particu-
larly in areas where data-driven decisions can make meaningful
strides [7, 20, 62]. E�cient data access is one such avenue, where
learning indexes have proven to be e�ective and practical [1, 11, 12,
17, 27, 29, 33–36, 38, 41–43, 51, 52, 54–57, 59–61, 64, 65, 73, 74, 76].
The pioneering work [27] proposed in this space uses a collection of
machine learning models to create a read-only ordered index for in-
teger keys. Due to its popularity and applicability, numerous follow-
up research projects have extended the initial work to support read-
write (updatable) indexes [11, 15, 29, 33, 35, 57, 58, 61, 64, 65, 68, 72],
string keys [53, 61, 63], multi-dimensional indexes [12, 17, 43, 60],
spatial indexes [34, 51, 73, 76], and other variants [36, 38, 54, 74].
This paper focuses on identifying performance challenges of up-
datable string-key learned indexes and addressing the challenges
through an algorithm-hardware co-designed solution.

Regardless of the data types of keys, an algorithmic common-
ality among most existing learned indexes is that the indexes are
constructed as a hierarchical structure where each node is a linear
model [10–12, 27, 33, 35, 36, 57, 61, 64, 65, 74, 75]. These linear
models are designed to collaboratively learn the mappings between
keys and their corresponding positions, using this information as
training data. The training process is inherently repetitive since the
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key-position mappings constantly change due to the update queries
(e.g., insert or delete), which necessitates retrainings to incorporate
the changes into the models.

In learned indexes, training of linear models is essentially solving
the following linear equation, -V=. where - is a key matrix, V
is a learnable parameter vector, and . is the corresponding posi-
tion vector. When learned indexes only support integer keys, the
training process is computationally trivial since - is a vector of
integer key values (i.e., =×1 matrix). However, when the keys are
variable-length strings,- becomes a =×:-size matrix where : is the
key length, which makes solving the equation a computationally
non-trivial task. To algorithmically reduce the compute load of this
training, existing string-key learned indexes [27, 53, 61, 63] employ
a matrix factorization strategy known as QR decomposition, which
enables training to be free from the burdens of matrix inversion.

Despite the algorithmic optimization, we observe that in the ex-
isting systems, the repetitive retrainings incur a severe performance
bottleneck, since (1) the complexity of QR decomposition, although
lower than matrix inversion, remains high, and (2) retrainings and
index query servicing for existing keys (i.e., inference) compete for
the limited CPU resource. Figure 1 shows that retraining time pro-
gressively grows as the number of keys and key lengths increase, on
a state-of-the-art string-key learned index, SIndex [61]. Each point
in the graph represents a retraining run. Increased retraining times
negatively impact the inference throughput, as they result in an
outdated index. This, in turn, lowers the index prediction accuracy
and necessitates a costly linear search to locate the correct position.
Thus, retraining is crucial for reducing service latency as well as
improving index throughput.

To address the aforementioned bottlenecks, we introduce SIA:
String-key Learned Index Acceleration. SIA enables e�cient and
scalable indexing by reducing the compute load of the retraining
process through an algorithmic technique and judiciously o�oads a
portion of the training computation onto an FPGA accelerator. The
challenge is that current learned indexes need to perform costly
matrix decomposition using the entire key-position mappings as
input to maintain model accuracy, which is pivotal for achieving
high index performance. To tackle this challenge, SIA utilizes a
modi�ed parallel decomposition technique that allows for piece-
wise computation of matrix decomposition. In designing SIA, we
leverage the insight that these retrainings occur on progressively
updated indexes, thus o�ering an opportunity to reuse computa-
tions from prior results via memoization. It is important to note
that training using the memoized decomposition results produces
mathematically identical outcomes to those obtained if the models
were fully retrained from scratch using the complete set of keys.

Building on the memoization-based decomposition, we develop
a learned index training algorithm that incrementally retrains the
models by leveraging the results of prior matrix decomposition.
This enhanced algorithm reduces the computational complexity
and retraining time, which in turn frees up CPU resources for
servicing queries. However, our empirical analyses suggest that
the algorithmic optimization, while helpful, o�ers a limited bene�t
since the retrainings still compete over the limited CPU resource. To
further reduce the retraining time, we enable the retrainings to be
accelerated using an FPGA.We choose FPGA over GPU owing to its
customizability to index-speci�c algorithm con�gurations, leading

to enhanced energy e�ciency. SIA combines these elements to o�er
a novel learned indexmechanism that aims to improve system query
throughput through both algorithmic and hardware innovations.
This work makes the following contributions:

• Identi�es the system bottlenecks in current updatable learned
index structures for string-keys, speci�cally, retraining the
ensemble models in the hierarchical structure. We observe
that as the retraining time grows, it progressively leads to
lower performance of learned index systems.

• Introduces a novel learned index system, SIA, that acceler-
ates the retraining process through an enhanced mathematical
approach to matrix decomposition, enabling incremental train-
ing. With incremental training, only updated keys are used
for computation, while the computation result for old keys is
reused.

• Further accelerates SIA’s incremental training process using
an FPGA-based design that reduces training time and frees up
CPU resources for index query servicing.

We demonstrate the e�ectiveness of SIA using two real-world
benchmark suites, YCSB and Twitter cache trace. For YCSB, we use
two datasets available to the public, Amazon review and Meme-
Tracker datasets, as well as a synthetic dataset.We integrate SIA into
the three updatable string-key learned indexes, includingALEX [11],
LIPP [64], and SIndex [61]. Compared to baseline learned indexes,
SIA provides 2.6× and 3.4× higher throughput for YCSB and Twit-
ter cache trace workloads, respectively. From an in-depth ablation
study using SIndex that breaks down the bene�ts of SIA, we observe
that employing solely the memoization decomposition-based incre-
mental learning algorithm o�ers 1.6× and 1.9× higher throughput.
However, when the FPGA-based SIA accelerator is employed, it
o�ers 2.8× and 4.3× higher throughput than the baselines, which
are respectively 1.8× and 2.3× additional speedup, a substantial
performance boost compared to the software-only counterpart.
These results suggest that taking an algorithm-hardware co-design
approach, SIA enables heterogeneous CPU-FPGA architecture to
operate as a platform of choice to achieve high throughput for
updatable string-key learned indexes. Our software and hardware
code for SIA is available at https://github.com/casys-kaist/sia.

2 A PRIMER ON LEARNED INDEX

Key-value stores are widely deployed in data management appli-
cations, where the index maps keys to their corresponding posi-
tions in a list of records. This pairing can be denoted as a function,
5 (:4~, ?>B8C8>=), with key as the input and position as the out-
put. Conventionally, hash-map and B-tree structures are commonly
used to store this mapping in an array of records. Despite its popu-
larity, they still have shown several limitations, which prevent their
“one-size-�ts-all” deployment. While hash-maps typically o�er low
average access time, they can be susceptible to hash collisions that
may lead to unpredictable increases in lookup and construction
time. Additionally, hash-mapsmay not perform as well as other data
structures for range queries. On the other hand, B-trees and their
variants do not have the same limitations as hash-maps, but their
average-case performance, in terms of both latency and throughput,
is generally lower than that of hash-maps. To overcome these limi-
tations, the community has explored the use of machine learning
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Figure 2: (a) Read-only learned index in a hierarchical structure, (b) updatable learned index, and (c) SIA: the proposed updatable

string-key learned index that leverages computation reuse and hardware acceleration to improve the system throughput.

Figure 3: Throughput results of two conventional indexes

and three learned indexes for YCSB workloads.

(ML) approaches to develop learned indexes as an alternative index
structure [10–13, 27, 34, 41, 57, 61, 64].
Learning to index keys. The initial work on learned indexes [27]
demonstrated that it is possible for ML models to learn the map-
pings between keys and their corresponding positions, using this
information as training data. Unlike traditional machine learning
models, which aim to generalize to unseen inputs, learned index
models are intentionally over�t to the training data, as index struc-
tures mostly encounter keys that have been inserted. Despite the
over�tting during training, inference-based indexing can still pro-
duce incorrect predictions due to the inherent approximation nature
of machine learning. When the queried key is not found at the pre-
dicted position, learned indexes search for the key within a bounded
range around the predicted position (i.e., [? + 4AAģğĤ , ? + 4AAģėĮ ]),
ensuring accurate indexing functionality [27].

When designing a ML model for learned indexes, there are vari-
ous alternatives that trade o� accuracy (model size and architec-
ture) against cost (inference latency and training time). Several
works [13, 27, 57, 61] have shown that a hierarchical structure of
linear models e�ectively balances this tradeo�. Each node in the
hierarchical structure is a linear regression model that needs to
be trained for a subset of the key-position mappings. These initial
works focus on read-only indexes, and hence training is carried out
once when building the indexes before deployment. The hierarchi-
cal structure for read-only indexing is depicted in Figure 2(a).
Updatable string-key learned index. Although restricting the
scope to read-only indexes was an e�ective setting to demonstrate

initial applicability of the “learning” approach, practical data man-
agement necessitates support for “update” queries (e.g., insert
and delete). Follow-up works overcome this limitation and devise
“updatable” learned indexes [11, 57, 61, 64]. ALEX [11] expands
nodes with deliberately-reserved empty spaces for unseen future
keys, which hold the newly inserted keys until the updated keys are
retrained. LIPP [64] ensures precise model prediction results and
removes costly local search usually used in other learned indexes.
XIndex [57] is another variant that maintains reserved spaces for
future keys, while unlike ALEX, the new keys are stored in sepa-
rate temporary bu�ers. SIndex [61] is one of the initial e�orts to
support variable-length string keys in learned indexes. As string
keys are an important datatype used in diverse applications such as
web servers, sequence analysis, and genomics, modern key-value
stores often have strong support for this datatype [3, 19, 21, 24, 28,
31, 37, 61, 66, 67, 70, 71]. Despite its importance, its performance
implication on updatable string-key learned index systems remains
under-examined in existing literature, which is the primary focus
of this work.
Intertwinement of retraining and inference. Unlike traditional
machine learning, training and inference phases in these updatable
learned indexes are not clearly demarcated. Instead, learned indexes
require iterative retrainings, because the training data is constantly
changing due to update queries. Concurrently, the index systems
must serve index queries by performing inference. This convergence
of training and inference can in�uence each other’s performance,
potentially resulting in a marked degradation of overall e�ciency.
Figure 2(b) delineates the common execution �ow where certain
threads are dedicated to query servicing and certain to retraining.
E�ectiveness of learned indexes. To better understand the e�ec-
tiveness of learned indexes, we conduct preliminary experiments
comparing the throughput of learned index structures with two
non-learned indexes, Wormhole [66] and Cuckoo Trie [71]. We use
the Yahoo! Cloud Serving Benchmark (YCSB) [8], a key-value store
benchmark suite with six di�erent workloads (see Section 7.1 for
details). Figure 3 shows that learned indexes generally o�er compa-
rable or higher performance than the two baseline indexes for both
integer and string key cases. However, the notable observation is
that when keys are string, learned indexes perform much worse
than the baselines for workload D and E. Workload D and E contain
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insert queries, which necessitate the constant retrainings for in-
dex updates. While the retrainings impose marginal overhead when
keys are integers, retrainings for string keys become severe per-
formance bottleneck, cancelling the performance gains of learned
indexes, as will be deeply analyzed in Section 3. This is the very
challenge we aim to tackle in this work through SIA.
Our approach. SIA sets out to tackle the challenges posed by
current updatable string-key learned indexes, with the following
objectives: (1) SIA aims to reduce the cost of training linear mod-
els without any mathematical implication on model quality, and
(2) it aims to enhance the system with an FPGA accelerator that
can execute the compute-intensive portion of training, thus reliev-
ing CPU resources for inference. Figure 2(c) depicts SIA’s system
architecture, which is built upon existing learned index systems.

3 ANALYSES OF LEARNED INDEXES

We conduct in-depth performance characterizations through a set
of experiments and obtain three main insights from the results.
These insights form the key driving forces behind SIA. For these
analyses, we use a SIndex system running on a 16-core server, the
details of which are provided in Section 7.1. We use a workload with
uniformly distributed keys, generating read and insert queries
based on a predetermined ratio (e.g., 70% read and 30% insert

queries). Insert queries raise the retraining complexity by adding
more keys to the index. We initialize the index with 1M keys.

3.1 Retraining-Time Scalability Analysis

Existing updatable string-key learned indexes su�er from a limita-
tion in that they aggregate all keys into a single dataset, making
computations more demanding as the number of keys increases. To
examine the scalability aspect of learned indexes, we measure the
retraining time as we gradually increase the total number of keys
from 1M to approximately 100M. Figure 1 shows the results with
each marker representing a retraining invocation. The experiment
shows that for total numbers of keys reaching 100M, the retraining
time becomes prohibitively long. Retraining time for the shortest
key length of 16 increases up to 100 seconds, while it exceeds 5 min-
utes for the case of key length 96. These extended retraining times
for indexing are infeasible as they result in the index being signi�-
cantly outdated. The results also show that progressively prolonged
retraining time ends up leading to longer intervals between retrain-
ing invocations. This delay occurs because the growing retraining
time increases the number of keys waiting for the next round of
retraining, resulting in a lower frequency of model updates.

This analysis shows that the existing updatable string-key learned

index systems face scalability issues. Thus, there is a need for a solu-

tion that minimizes the retraining time for linear models, especially

when dealing with large index sizes and long key lengths.

3.2 Impact of Slow Retraining on Throughput

Given the aforementioned insight, a subsequent research question
could be, “Why is retraining vital for the overall e�cacy of the
learned index system?” The response to this inquiry is that training
in�uences throughput in two signi�cant ways. (1) First, slow re-
training causes the models to become outdated, resulting in reduced

Figure 4: Throughput as training time varies from 5 to 300

seconds. Training does not utilize any CPU cycles. The inser-

tion ratio sweeps from 0% (read-only) to 50%.

index prediction accuracy and requiring a costly linear search to
locate the correct position. This, in turn, leads to prolonged index
search latencies for more read queries, negatively impacting the
overall system throughput. (2) Second, as retraining and inference
run simultaneously on the same system and compete for CPU re-
sources, the inference throughput is adversely a�ected. We discuss
the �rst implication in this section and leave the discussion for the
second e�ect to Section 3.3.

To demonstrate the impact of slow training over throughput, we
develop a “�ctitious” system that can retrain linear models within
a predetermined training time without using any CPU resources
for training. This method allows us to isolate the impact of slow
retraining separate from the implications of CPU resource con-
tention. Figure 4 depicts the throughput of this �ctitious system
as the retraining duration shifts between 5s and 300s. The results
show a consistent decline in throughput as the retraining time
lengthens, since learned indexes must use outdated models during
the retraining period, which would increase the frequency and de-
gree of linear search to locate the correct position. Additionally, we
observe that as the insertion ratio rises, the system sees a decline
in throughput. This is because a greater number of inserted keys
await in the bu�er before integration into the learned index, which
again requires more overhead on linear search at the non-trained
key bu�ers. While the reported throughput averages over time, in
a practical scenario, throughput would gradually drop as runtime
progresses, because, unlike our hypothetical system, a real system
would face an ever-increasing retraining time.

Our study suggests that a long retraining period hurts the end-to-end

system throughput of updatable string-key learned index systems.

Therefore, fast retraining of linear models is imperative.

3.3 Implication of CPU Resource Allocation

A straightforward solution to reduce training time would be to
allocate more CPU resources. To better understand the correlation
between throughput and CPU resources, we perform an experiment
that measures the system throughput as we vary the number of
threads allocated for inference (index serving) and training, while
maintaining the number of threads assigned to the other task at 1.
This approach allows us to determine the performance bene�ts that
inference and training could achieve with additional CPU resources,
respectively. As our system has 16 cores, we vary the number of
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(a) (b)

Figure 5: Throughput with varying threads for (a) inference

and 1 for training, (b) training and 1 for inference.

cores allocated to either inference or training threads from 1 to 15,
maintaining the insertion ratio at 50% and the key length at 32.

Figure 5(a) and Figure 5(b) show throughput trends. When the
number of threads for training is 1, the additional CPU threads
allocated for inference result in sub-linear yet substantial perfor-
mance scaling. This is because inference is read-only and multiple
inferences can be executed independently and in parallel across
threads. However, when the inference process is restricted to a
single thread while training utilizes an increasing number of cores,
the additional resources only yield marginal bene�ts. The limited
e�ectiveness of CPU for training can be attributed to the limited
parallelism in the matrix decomposition algorithm used for linear
regression training, as explained in further detail in Section 5.2.

We note that inference gains more from extra CPU resources com-

pared to training. As a result, we propose a heterogeneous system

that allocates CPU resources primarily for inference, while employ-

ing an FPGA accelerator for the training process.

4 SIA DESIGN PRINCIPLES

Building upon the insights, we propose a hardware-accelerated up-
datable string-key learned index system, dubbed SIA. First, SIA pro-
poses a novel incremental index learning algorithm, which reduces
the computing complexity and execution time of each retraining
process. SIA then dedicates most of the CPU resource for inference
serving by o�oading the training to an FPGA accelerator, thus
collaboratively achieving high throughput. This section outlines
the design principles of each SIA component.
Algorithm design principle: Performing only necessary com-

putations for learned indexes. The fundamental challenge ad-
dressed in this work is the lack of scalability in learned index train-
ing since the compute operations for training compounds as the
number of keys grows. In learned index systems, every retraining
run necessitates the processing of the entire dataset. The current
state-of-the-art approach involves performing matrix decomposi-
tion, matrix inverse, dot product, and transpose operations over
the entire dataset to determine the parameters of the linear models.
To reduce the computing complexity of the training, we devise an
incremental index learning algorithm that memoizes the results of
previous retraining computations and reuses them in combination
with the new results obtained from the augmented training data.
With this algorithm, the computational load is not determined by
the total number of keys, but rather by the number of updated keys.

f00

f11f10

f20 f21 f22 f23

Key-Position Training Dataset

pos

(a) (b)

Linear regression using
QR decomposition

Xβ = y where X = QR

XTXβ = XTY

β = (XTX)−1XTY

β = ((QR)T (QR))−1XTY

β = (RTQTQR)−1XTY

β = (RTR)−1XTY

β = (R−1R−1T )XTY

Figure 6: (a) Recursive Model Index, and (b) Linear regression

training operations required per model.

Hardware design principle: Designing the accelerator speci�-

cally for training to ensure high energy e�ciency as index

systems are often dedicated for the exclusive purpose and are

consistently operational. Updatable learned indexes must cease-
lessly perform training to keep up with the changes made by update
queries, which makes achieving high energy e�ciency a primary
concern in designing the systems. Although employing a GPU is
seemingly a straightforward approach to attaining high throughput,
the advantage is o�set by substantial energy consumption. Thus,
in this work, we choose FPGA as our platform. FPGA not only
allows us to customize accelerators for diverse algorithm/system
constraints and thus achieve high energy e�ciency, but also it is
already available in the form of o�-the-shelf cards, which facilitates
integration with the existing systems [25, 45]. To e�ectively utilize
FPGAs for changing training con�gurations and index model sizes,
we develop a hand-optimized design speci�cally for the proposed
memoization-based incremental training algorithm.
So�ware design principle: Enabling plug-and-play based run-

time software for generality and non-invasiveness. While
hardware acceleration can o�er signi�cant performance gains, the
proposed technique needs to be integrated seamlessly with existing
learned index systems. Thus, SIA cannot be speci�c to a certain up-
datable learned index. SIA’s system software is built by determining
the commonalities of existing updatable learned indexes and inte-
grating the FPGA-based accelerator with minimal modi�cations to
the existing software stack. To accomplish this objective, we utilize
the fact that although various learned indexes may have di�erent
model structures and index management mechanisms, they all rely
on linear regression models as the fundamental kernel, which can
be readily separable from the other components of the index system.
Given this insight, we encapsulate the accelerator and its driver as
a linear model training library, which is customized for the case
where the training data incrementally grows or shrinks.

5 INCREMENTAL INDEX LEARNING

Reducing the training workload of the updatable learned index
structures is a key challenge tackled by this work. In this section, we
�rst provide the background on training hierarchically structured
learned indexes, which requires linear regression training using
matrix decomposition.We then introduce SIA’s novel index learning
algorithm, which e�ectively reduces the computational load of the
training process via reuse, without any changes to model quality.
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Algorithm 1: Householder QR decomposition.

Input :- : Matrix of size< × =
Output :': Upper triangular matrix of size = × =

1 for (8 ← 0 to = − 2) do
2 2>;ğ = - [8 :<, 8]

3 3 =
√

dot (2>;ğ , 2>;ğ )
4 A4 5ğ = cal_re�ector (2>;ğ , 3)
5 W = −2 / dot(A4 5ğ , A4 5ğ )
6 for ( 9 ← 8 to = − 1) do
7 2>; Ġ = - [8 :<, 9]
8 U = W × dot (A4 5ğ , 2>; Ġ )
9 2>; Ġ = axpy (U , A4 5ğ , 2>; Ġ )

10 ' [8, 9] = - [8, 9]
11 end
12 end

5.1 Hierarchical Model Index Training

Most learned indexes [11, 13, 26, 27, 33, 35, 36, 38, 57, 60, 61, 64, 65]
share a unique commonality by employing a hierarchical model
index structure, as illustrated in Figure 6(a). In the hierarchical
structure, the internal and leaf nodes have di�erent roles: learned
models at internal nodes predict which node to traverse among the
children and learned models at leaf nodes predict the positions for
the queried keys. This structure splits the entire key range into a
series of small and possibly overlapping ranges, where each range
is assigned to a leaf node and learned with the associated model.
Note that due to update queries, the index structure can potentially
expand or shrink, as the total number of keys handled by the system
increases and decreases.

The hierarchical index is trained in two main ways: (1) cold
training from scratch, which is for new nodes created due to the in-
dex structure changes, and (2) updating pre-existing models within
the existing nodes due to key additions or deletions without any
alterations to the hierarchical index structure. Cold training is infre-
quent, typically triggered only when the prediction accuracy falls
below a set threshold. Mostly, keys are updated without the need
to add or remove any nodes. Hence, SIA focuses on optimizing the
latter, reserving conventional training techniques for the former.

5.2 Linear Regression Training

Linear regression (LR) models the relationship between variables by
�tting a linear equation to training data. Formally, given an input
- = ((G11, .. , G1Ħ ), .. , (GĤ1, .. , GĤĦ )) and output . = (~1, .. , ~Ĥ), a
LR model is . = -V where V = (V1, .. , VĦ ). Training determines V
for a given dataset. In the context of learned index that uses variable-
length string keys, the input to the models is a matrix- with = rows
where each row is a numerically encoded key vector of length ? ,
and . (output) is a vector of integer values that represent the keys’
positions in the sorted key array. Even for updating the pre-existing
models, the entire - and . are required to retrain all the models
traversed in the hierarchical structure and determine their new
VB . After retraining, the index for a given key can be predicted by
performing a series of dot products between the traversed model
input - and their corresponding VB .
Learning the parameters. Every V can be obtained by invers-
ing the matrix - and multiplying it with the output vector . (i.e.,

R

R

R

R

R

R R7

¯ 1st Stage ° 2nd Stage ± 3rd Stage
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7
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7
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7

X

Figure 7: Parallel QR decomposition.

V = - −1. ). However, computing the inverse matrix - −1 can be
computationally prohibitive, especially when the matrix size is
large. To tackle the challenge, an existing alternative approach
commonly and widely used in practice is to employ a matrix fac-
torization method, known as QR decomposition (QRD) technique.
QRD decomposes a matrix - into a multiplication of two matrices:
& , an =x?-sized matrix with &Đ& = &&Đ

= � , and ', a ?x?-sized
upper triangular matrix.

Figure 6(b) illustrates the linear algebra operations required to
determine V , leveraging the QRD technique. At �rst, the QRD of the
input dataset - is performed, which produces & and '. After the
decomposition, the following operations are performed: (1) comput-
ing the inverse of the upper triangular matrix ('−1), (2) transposing

matrices ('−1
Đ
and -Đ ), (3) multiplying the resulting small matri-

ces ('−1'−1
Đ
), and (4) matrix-vector multiplication (-Đ. ). Note

that during training, only the ' matrix is required.
Householder QR decomposition. QR decomposition can be com-
puted using various algorithmic methods [14, 18, 23]. Among these
methods, we base SIA on the Householder algorithm [23] owing to
its relatively enhanced numerical stability, while SIA remains com-
patible with other alternatives due to their algorithmically similar
traits. Algorithm 12 illustrates the Householder algorithm [23]. The
algorithm has two loops. In the outer loop, the algorithm iterates
over the columns of the input matrix and calculates a vector, called a
re�ector (A4 5ğ ), and a scalar value W . For each column, the inner loop
visits all the columns located on the right of the current column
one by one, and updates the visiting column while producing the
' [8] [ 9] values. The nature of this process is fundamentally serial.
Parallelizing QR decomposition. Vanilla QRD algorithms, in-
cluding Algorithm 12, execute sequentially by sweeping through
the columns of an input matrix and gradually �lling the rows and
columns of the & and ' matrices, respectively. Thus, QRD can be
slow for large matrices, as is the case with learned index. As the
number of keys grows, the height of the key matrix- also increases
(= × ? matrix where = » ?), making it a tall-and-skinny matrix.

Prior works [6, 16, 47] o�er a parallelization mechanism cus-
tomized for tall-and-skinny matrices. The parallelization mecha-
nism exploits a mathematical property of orthogonal matrix & that
its transpose is equal to its inverse matrix, as depicted with an ex-
ample in Figure 7. Let - be an input matrix for an LR model within
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Figure 8: Memoized QR decomposition.

Algorithm 2: Incremental index learning algorithm.

Input :ĉĥĢĚ : Current linear models
ĔĥĢĚ : Current key matrices
Ĕ�: Newly inserted key matrices
ĕĥĢĚ : Current index vectors
ĎĥĢĚ : Memoized R matrices

Output :ĉĤěĭ : Updated linear models
ĔĤěĭ : Updated key matrices
ĕĤěĭ : Updated index vectors
ĎĤěĭ : Newly memoized R matrices

1 InitializeĉĤěĭ ← ∅, ĔĤěĭ ← ∅, ĎĤěĭ ← ∅
2 while (ģ ∈ ĉĥĢĚ ) do
3 ģğĚ ←ģ.ģĥĚěĢ_ğĚ

4 ĔĤěĭ [ģğĚ ] ← concat (ĔĥĢĚ [ģğĚ ], Ĕ� [ģğĚ ])
5 ĕĤěĭ [ģğĚ ] ← calc_index(ĕĥĢĚ [ģğĚ ], ĔĤěĭ [ģğĚ ])

6 ĪģĦ = (ĔĤěĭ [ģğĚ ] )Đ × ĕĤěĭ [ģğĚ ]

7 Ď� ← QR(Ĕ� [ģğĚ ])
8 ĎĪģĦ ← concat(ĎĥĢĚ [ģğĚ ], Ď�)
9 ĎĤěĭ [ģğĚ ] ← QR(ĎĪģĦ )

10 ÿ = ((ĎĤěĭ [ģğĚ ] )−1 × ( (ĎĤěĭ [ģğĚ ] )−1 )Đ ) × ĪģĦ

11 ĉĤěĭ [ģğĚ ] .ÿ ← ÿ

12 end

the tree. - is decomposed through three steps: (1) - is vertically
split into smaller sub-matrices (-1, -2, -3, -4) and decomposed into
QR matrices in parallel; (2) the QR decomposition is performed on
the vertically concatenated ' matrices (concat('1,1, '1,2) and con-

cat('1,3, '1,4)); (3) �nally, the last QR decomposition is applied over
concat('2,1, '2,2) to produce '3,1. The resulting '3,1 is mathemati-
cally equivalent to ', obtainable by decomposing the - as a whole
without parallelization.

5.3 SIA’s Incremental Index Learning

Memoized QRD via computation reuse. Exploiting the math-
ematical insight of parallelized QRD, we modify the vanilla QRD
that incurs a heavy amount of computation and devise a memoized
QRD. Figure 8 shows the memoized QRD algorithm. We exclu-
sively consider the case that the number of keys grows due to the
insert queries1. When a learned index is retrained, we require the
' matrix corresponding to the current - . To do so, we memoize
the computed ' matrix in memory at every retraining invocation
('Ī ). When a retraining is invoked, the rows of collected additional

1We will discuss the delete query handling in Section 6.4.

Figure 9: Increasing retraining time as the total number of

keys increases with CPU-based memoized QRD on SIndex.

For comparison, the shaded lines depict the results presented

in Figure 1.

Figure 10: Breakdown of linear model training runtime.

keys -�Ī+1 is decomposed. Then, similar to the parallelized QRD,
we concatenate the 'Ī and '�Ī+1, and perform one more QRD to
obtain the �nal 'Ī+1. Now, 'Ī+1 is used for linear model training
and cached in memory for the next retraining run. Note that SIA’s
QRD algorithm involves only two small QR decompositions, which
signi�cantly reduces the compute load by reusing the performed
computations. Moreover, the size of each ' matrix is ? × ? where
? is the key length, thus is very small and does not incur large
memory footprint overhead. For instance, with a key length of 96,
the size of ' is merely 72 KB (=96×96×8).
SIA’s incremental index learning algorithm. SIA’s incremental
index learning algorithm uses the memoized QRD to train the
models in the updatable learned indexes. Algorithm 12 describes
SIA’s training process. The algorithm loops over the list of linear
models in the hierarchical structure, which need to be updated. It
concatenates the existing keys -ĥĢĚ with new keys -� to obtain
-Ĥěĭ , calculates indexes for the new keys to update.ĥĢĚ with.Ĥěĭ ,
and computes the (-Ĥěĭ)Đ.Ĥěĭ . Then, the algorithm performs the
memoized QRD, which results in 'Ĥěĭ . Using 'Ĥěĭ , the algorithm
obtains the V and updates the model parameters with the new V .
The obtained 'Ĥěĭ is memoized for next retrainings. The same
training process is repeated until the models of all leaf and internal
nodes in the index structure are updated.
Limitation of software-only solution.We observe that the SIA’s
learning algorithm already substantially reduces the computational
cost of training the learned index, even when implemented in soft-
ware without hardware acceleration. Figure 9 shows the improved
training time with the proposed memoized algorithm. Compared
to the baseline reported in Figure 1, which is presented as dimmed
lines in Figure 9, the retraining time is reduced for all the evaluated
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Figure 11: (a) SIA’s system where the CPU runs the training thread to issue jobs to the accelerator. Accelerator executes the

training operations on the training engine; (b) Microarchitecture of QR decomposition unit.

key lengths, as re�ected by the slopes of line graphs. Moreover,
this shortens the retraining interval, as shown in Figure 9 report-
ing a greater number of data points (markers), each corresponding
to a retraining. However, Figure 9 also shows that the resulting
reduction in training time is insu�cient, still extending up to 200s.
Acceleration target determination. This observation motivates
us to devise an e�cient and performant hardware accelerator for
training. However, the �rst crucial step is to determine the accelera-
tion targets for o�oading to the hardware. For this purpose, we �rst
characterize the core compute kernels of training. Figure 10 shows
the results as we vary the key length from 16 to 96.We look into four
kernels: (1) training data matricization, (2) QR decomposition, (3) R
matrix inverse calculation and matrix-matrix multiplication, and
(4) matrix-vector multiplication. As the data matricization is mostly
memory copy, it needs to be performed by CPU. We also rule out
matrix-vector multiplication from the acceleration targets since it
requires a memory copy for the entire - matrix from host to FPGA.
To this end, this work focuses on accelerating QR decomposition,
R inverse, and GEMM operations on the FPGA.

6 SIA SYSTEM DESIGN

While SIA employs the incremental learning algorithm to reduce
the computation load, we enhance this algorithmic approach by in-
corporating an FPGA accelerator and customized runtime software
to further accelerate SIA’s training. We �rst describe the overview
of SIA’s system, and then, elaborate each component in detail.

6.1 FPGA-Accelerated Training Infrastructure

FPGAs have been commonly used as a successful platforms for
acceleration [39, 40, 46, 50] and are even deployed in cloud data-
centers [48]. Figure 11(a) depicts the SIA system accelerated using
FPGA. As in existing learned index systems, SIA employs a multi-
core CPU that can serve both inference and training. However,
SIA also comes with an FPGA accelerator to o�oad training com-
putation. We chose FPGA as the acceleration platform owing to
its customizability to index-speci�c algorithms and high energy

e�ciency, which is crucial for index systems since trainings are con-
sistently conducted throughout their lifespan. Unlike the existing
systems, SIA only runs a single training thread to not only compute
the non-accelerated memory-bound kernels, but also manage the
data transfer between host and FPGA and control the accelerator
invocations. The training thread iterates over a list of linear models
within the hierarchical structure and initiates the retrainings of
these models one by one on available Training Engines (TEs). To
train a model, the newly inserted keys accumulated in the bu�er
(-�) are �rst copied from host to FPGA. FPGA’s o�-chip memory
maintains an array of 'ĥĢĚ matrices, which are memoized from the
previous retraining runs. In the �gure, the superscript<83 on the '
and- matrices refers to the model ID. After the memory copy from
the host to FPGA is completed, the training thread sets a control
register in the accelerator controller, scheduling the training com-
putation to an available TE. The training thread is also responsible
for updating the model parameters, which occurs repeatedly during
runtime, allowing the index to integrate new keys.

6.2 Accelerator Architecture

Training Engine. Figure 11(a) also depicts the TE architecture.
The �rst computation performed by TE is the SIA’s QRD algorithm
described in Section 5.2. The TE feeds -� to the QRD unit. It then
obtains the '�, which is concatenated with the memoized 'ĥĢĚ in
the scratchpad memory to produce the 'ĪģĦ . This 'ĪģĦ is then fed
to the QRD unit as an input that produces 'Ĥěĭ . The next step is to
perform 'Ĥěĭ matrix inversion and matrix-matrix multiplication
(i.e., GEMM) between the inverse and its transpose. We exploit
a parallelized matrix inverse algorithm, Heller’s algorithm [22],
which e�ectively converts a matrix inverse into a series of recursive
GEMMs. As we transform all needed operations into a series of
GEMMs, a systolic-array accelerator equipped with a transpose
unit can complete all the necessary kernel executions. Once the
computation is completed, the accelerator controller uses a control
�ag to inform the training thread about the completion.
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QRD Unit. Due to its computational intensity in mathematical
problems, QRD has been a target for hardware acceleration [6, 30,
49]. We devise the architecture of our QRD unit inspired by an exist-
ing QRD accelerator [6], which executes the Householder algorithm
described in Algorithm 12. Figure 11(b) shows the microarchitec-
ture of the QRD unit in each Training Engine. QRD unit constitutes
an array of Processing Units (PUs), each of which executes a QRD.
The results of PUs are concatenated and stored back to the matrix
bu�er for the next stage of QRD (Figure 7). Each PU �rst gets its
input data from scratchpad memory (-� or '�) and stores them
in the matrix bu�er. Then, the outer loop in Algorithm 12 is per-
formed at the “Outer Loop PE”, which calculates the re�ector and
W . These two inputs are sent to a set of "Inner Loop PEs", which are
responsible for calculating 'Ĥěĭ [8] [ 9] for di�erent columns in par-
allel. Each “Outer Loop PE” and “Inner Loop PE” is equipped with a
vector of multiply-and-accumulate (MACC) units for dot products.
The resulting 'Ĥěĭ matrix is sent to the scratchpad memory and
replaces 'ĥĢĚ for future retrainings.

6.3 Runtime Software Interface

As emphasized in Section 5.1, in designing the SIA system, we
leverage a commonality of most learned indexes that they use linear
regression as their backend machine learning models. This unique
property enables us to build an abstraction between various learned
indexes and our hardware accelerator solution. Hence, SIA could
be readily adopted by any linear model-based learned indexes.

To transparently develop the abstraction and facilitate the use
of underlying acceleration solution, we encapsulate the SIA ac-
celerator along with its device driver and accelerator invocation
runtime software as a library. In fact, as existing learned index
systems often employ LAPACK, a famous linear algebra library, we
propose SIA’s interfaces to be equivalent to the LAPACK’s, so that
the integration of SIA with the existing systems becomes straight-
forward. The runtime interface of SIA includes two functions: (1)
cold_train: a function for full model training with key matrix and
key’s position vector, and (2) incre_train: a function for incremen-
tal learning with memoization that takes the memoized ' matrix
as an additional argument. These two functions closely resemble
the LAPACK’s gels function, enabling existing updatable learned
indexes to leverage SIA’s incremental index learning algorithm and
hardware acceleration with minimal software modi�cations.

6.4 Lazy Delete Query Handling

While this paper has focused on the insert query handling thus far,
updatable learned indexes must be able to handle delete queries as
well. Conventional updatable learned indexes handle these delete
queries through retraining, similarly to the insert queries. In con-
trast, our incremental learning algorithm exploits a memoization
technique, which relies on the assumption that the existing keys
used to compute the memoized ' matrix are not changed. There-
fore, the removal of keys from the index inevitably forces SIA to
discard the memoized ' matrix and necessitates a cold training,
which undercuts the advantages of our proposed technique.

To tackle this problem, we employ a lazy delete handling tech-
nique where the deleted keys are simply �agged as “deleted”, yet the
information of these deleted keys still remains in the memoized '

matrices. This way, our incremental training method remains e�ec-
tive during retraining. It is important to note, however, that upon
marking as “deleted”, the key string and associated value data are
immediately erased from the indexes for security purposes. Memo-
ized R matrices for the “deleted” keys are eliminated during cold
training, where the models are trained from scratch without utiliz-
ing the memoized matrices. Note that our lazy deletion technique
does not a�ect the functionality of indexes, but only in�uences per-
formance, since deleted-yet-unremoved information would lower
the prediction accuracy and end up increasing the linear search cost
for mispredicted accesses. However, we observe that lazy deletion
has a marginal impact on performance, with less than 5% overhead.

6.5 Implication of Node Split and Merge

The hierarchical structure of learned index undergoes structural
modi�cations through either split ormerge, as new keys are inserted
or deleted. Model split involves partitioning the keys assigned to a
node into two nodes when the accuracy of the corresponding model
drops, while model merge combines two nodes into one when both
have su�ciently high accuracy. SIA employs the same threshold
determination mechanism for split and merge as the default learned
index system, without any modi�cations. Note that SIA should
perform cold trainings for split nodes as they lack memoized '

matrices, while for merged nodes, SIA can merge the ' matrices
and use the merged ' matrix for further incremental training.

7 EVALUATION

To evaluate the e�ectiveness of SIA, we use two open-source bench-
mark suites, YCSB and Twitter cache trace, using two real-world
datasets, Amazon review and MemeTracker. We evaluate through-
put, system-level energy e�ciency, and memory usage of SIA-
accelerated learned indexes, compared to other index structures.

7.1 Methodology

YCSB. To evaluate SIA, we primarily use a real-world key-value
store benchmark suite, YCSB [8]. YCSB contains six diverse work-
loads (A-F), each characterized by its unique mix of query types.
As SIA is for updatable learned index systems, we focus on the two
workloads among the six, which include insert queries: (D) read
latest that tend to have read queries for recently inserted keys,
along with roughly the 5% of insert queries, and (E) short ranges
that consists of 95% range queries, and 5% of insert queries. Note
that while YCSB’s query compositions mirror real-world applica-
tion patterns, the key lengths do not. To better emulate real-world
key-value stores, we employ two genuine string datasets: Amazon
review data and the MemeTracker dataset. Amazon review data
(amaz) [44] is collected from user reviews on products from Ama-
zon with the user IDs as keys of length 12. MemeTracker dataset
(meme) [32] comprises quotes and phrases collected from the web
and online news URLs referring to them with the URLs as keys
of length 128. We use these datasets since they are widely used in
prior works [61, 66, 70] to evaluate the string-key key-value stores.
Additionally, we use a randomly synthesized dataset (rand) with a
uniform key distribution.
Twitter cache trace. Complementing YCSB, we also utilize the
Twitter cache trace [69] to enrich our experimental methodology.
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Table 1: Hardware speci�cations and resource utilization of

the Intel Arria 10 with the con�guration of with 4 TEs, each

having 2 PUs, and each PU containing 3 Outer Loop PEs.

Figure 12: Throughput comparison of non-learned (conven-

tional) and learned indexes for YCSB and Twitter cache trace.

Twitter cache trace constitutes a pile of indexing traces collected
from Twitter clusters, which allows it to concurrently serve as a
workload and a dataset. Among the provided 54 cluster traces, we
speci�cally select four cluster traces with a relatively signi�cant
volume of update queries, each of which exhibits a distinct query
composition, represented by the following tuples of (cluster ID,
update query ratio): (12.2, 43%), (15.5, 59%), (31.1, 56%), (37.3, 42%).
Baselines. As baselines, we use three state-of-the-art learned in-
dexes, ALEX [11], LIPP [64], and SIndex [61], all of which are chosen
for their open-source implementations available at our disposal.
We added the variable-length string key and multi-threading sup-
port on top of ALEX and LIPP, as they lack the features. We built
their corresponding SIA-accelerated counterparts by integrating the
implementation with our SIA library. Note that while the three sys-
tems have disparities in how to initially build the indexes through
bulk loading (e.g., top-down vs. bottom-up), it does not a�ect our
performance evaluations because the index building only requires
cold retrainings, which cannot exploit the proposed incremental
index learning algorithm.

Furthermore, we include comparisons between SIA-accelerated
learned indexes and two state-of-the-art non-learned indexes,Worm-
hole [66] and Cuckoo Trie [71], all of which support variable-length
string keys. Wormhole [66] is an optimized B-tree in which part of
the tree is replaced with a trie utilizing hashes. Cuckoo Trie [71]
is a hash-based trie index that achieves high performance through
overlapping memory accesses.
System speci�cations. The SIA-accelerated learned index systems
are equipped with a 16-core Intel Xeon Gold 6226R and 128 GB
DRAM. For building SIndex-GPU, GPU-accelerated variant of SIn-
dex, we employ NVIDIA GeForce RTX 2080 TI GPU along with the

û

Figure 13: Latency breakdown for YCSB D/E workloads using

rand dataset. Range scan includes bu�er search for YCSB-E.

same CPU and memory con�guration. SIndex-GPU uses CuSolver
library in CUDA version 11.7. For the runtime measurement of the
baseline learned index systems, we use a highly-optimized, parallel
linear algebra library, Intel Math Kernel Library (MKL) 2019.0.
FPGA platform details. Table 1 shows the hardware resource
speci�cation of the evaluated FPGA, Intel Arria 10 GX-1150, and
its utilization when we program our accelerator on it. We develop
a custom accelerator controller on the programmable logic to inter-
face with the device’s main memory. We synthesize the hardware
with Quartus II v20.1, and achieve a frequency of 272 MHz.
Power measurement. To measure the end-to-end system power,
we use an o�-the-shelf power meter, WATTMAN HPM-100A [2].
This power meter is placed between the power outlets and the
server, which are con�gured with various processor combinations,
including CPU-only, CPU-GPU, and CPU-FPGA setups. The mea-
sured power can be monitored per each second through the vendor-
provided software, which we average over the experiment runtime.

7.2 Experimental Results

7.2.1 Throughput. Figure 12 shows the throughput comparison
results among two non-learned indexes (Wormhole and Cuckoo

Trie), three learned indexes (ALEX, LIPP, SIndex), and their SIA-
accelerated counterparts (ALEX-SIA, LIPP-SIA, SIndex-SIA).
YCSB results. Figure 12(a) illustrates the results using two YCSB
workloads across three datasets: rand, amaz, and meme. Although
there is some variability in the results, we observe a consistent
trend that the SIA-accelerated indexes outperform the learned index
baselines, as well as the conventional, non-learned index baselines.
This translates to approximately an average 2.6× throughput im-
provement over CPU-only learned index systems. This substantial
enhancement is attributed to SIA’s utilization of both iterative learn-
ing algorithm and customized hardware accelerator. This approach
dedicates the majority of CPU cores to inferences, while the system
allocates only one training thread for memory-bound kernels and
accelerator management, not performing any expensive operations.
Twitter cache trace results. Figure 12(b) reports the throughput
results for Twitter cache trace. Twitter cache trace has diverse
key lengths that range from 19 to 82. As the key length directly
a�ects the computational load, there are variations among clusters
in the throughput results. On average, the SIA-accelerated learned
indexes o�er 3.4× throughput improvement over CPU-only systems,
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Figure 14: Memory consumption of traditional (non-learned)

indexes, baseline learned indexes, and learned indexes with

SIA. Key and value data is excluded.

representing a more substantial performance improvement than
observed in the YCSB scenario. The larger gain comes from that the
dataset of Twitter cache trace has generally longer keys, making the
keymatrix larger, which can be better parallelized by the accelerator.
Overall, the results suggest that SIA is an e�ective solution for
enabling updatable string-key learned indexes without su�ering
from performance bottlenecks caused by training computations.

7.2.2 �ery Latency. To understand the source of performance
improvements, we further analyze the query latency for YCSBwork-
load (D) and (E), and present the breakdown results in Figure 13.
Non-learned indexes,Wormhole and Cuckoo Trie, require traversal
through their tree structures, which often involve multiple DRAM
accesses, leading to high query latency. In contrast, learned indexes
(SIndex and SIndex-SIA) require much fewer memory accesses for
graph traversal. In fact, the depth of hierarchical learned index
structure of SIndex is only two, which imposes signi�cantly lower
memory access overhead than the alternatives. As the cost of these
bene�ts, the learned indexes must pay other costs such asML in-

ference, local search in case of misprediction, and bu�er search

for seeking the “not-yet-trained” keys. The outcomes of the study
reveal that the bu�er search is the largest overhead, especially for
SIndex, because it piles up a large number of keys in the bu�er due
to slow retraining. On the contrary, SIA accelerates the retrainings
and frequently empties the bu�ers of SIndex-SIA, which substan-
tially reduces the bu�er search latency, directly leading to the total
latency reduction.

7.2.3 Memory Usage. Figure 14 reports the memory usage of �ve
baselines (learned and non-learned) and three SIA-accelerated learn-
ed indexes. To speci�cally assess the memory usage di�erence
among the indexes, we exclusively measure the memory usage
for indexes, not key and values. Learned indexes typically require
signi�cantly less memory because they e�ciently compress the
key-position mapping information from hierarchical data struc-
tures into a series of compact machine learning models. SIA incurs
marginal overhead in memory usage as it must additionally store
the Ď matrices for memoized computation. However, the average
overhead measured in our experiments is merely 6.0%, which is
negligible and justi�able with the signi�cant performance improve-
ments.

7.2.4 Ablation Study. For a more thorough analysis of the fac-
tors contributing to performance improvements, we focus on the

Figure 15: Ablation study results using SIndex variants.

SIA-accelerated SIndex and conduct an ablation study. Figure 15
compares the throughput of the �ve SIndex variants. SIndex-GPU
is a system o�oading retraining to GPU, while SIndex-Ideal is a sys-
tem equipped with an in�nitely fast accelerator that trains models
in zero time. On the other hand, SIndex-SIA-SW and SIndex-SIA-

HW are the SIA-accelerated SIndex systems with algorithm-only
and algorithm-hardware co-designed SIA solutions, respectively.
SIndex-GPU achieves 2.3× throughput improvement compared to
the default CPU baseline, SIndex-CPU. While SIndex-SIA-SW of-
fers 1.7× improvement over SIndex-CPU, the bene�t is 56.5% lower
than that of SIndex-GPU, which demonstrates the limitation of the
software-only solution. However, SIndex-SIA-HW achieves 2.0×
additional improvement over SIndex-SIA-SW, closely approach-
ing to SIndex-Ideal, 11.6% higher than what SIndex-GPU o�ers,
which presents the e�ectiveness of hardware acceleration. These
results show the e�ectiveness and necessity of SIA as a solution
that synergizes algorithm and hardware designs for acceleration.

7.2.5 System Power Consumption. We choose FPGA due to its
capability to tailor the hardware architecture for the given task,
incremental training, delivering notably higher energy e�ciency
compared to GPU. Figure 16 illustrates the system-level power
consumption of SIndex variants: SIndex-CPU, SIndex-GPU, and
SIndex-SIA, which demonstrates the advantages of FPGA acceler-
ation in power e�ciency. We observe that the CPU-only system,
SIndex-CPU, operates at 150W, with a signi�cant portion of this
power attributed to CPU-based training. SIndex-GPU operates at
203W, dissipating 79W for training at GPU and the remaining 123W
for the CPU-based system. In contrast, SIndex-SIA, a CPU-FPGA
heterogeneous system, consumes only 126W as the FPGA accelera-
tor adds only 3W to the CPU-only system, which demonstrates the
power e�ciency of the FPGA.

7.2.6 Throughput-per-wa�. As noted in the power consumption
analysis, if we only consider the accelerator itself instead of the
entire system, FPGA o�ers 28× less power consumption compared
to GPU. However, when we consider the system-level power con-
sumption with their throughput together, SIndex-SIA achieves only
1.76× higher throughput-per-watt compared to SIndex-GPU. While
the gain may be deemed modest, the 76% gap could translate into
substantial cost disparities in terms of actual monetary expendi-
ture since index systems tend to remain operational continuously,
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Figure 16: Average power consumption of SIndex-CPU,

SIndex-GPU, and SIndex-SIA end-to-end systems. Vertical

lines indicate minimum and maximum power consumption.

Figure 17: Throughput of non-learned and learned indexes

for queries with di�erent request distributions.

consistently dissipating considerable amounts of energy. These re-
sults suggest that for the given task, the continuous retrainings of
updatable learned indexes, FPGA is a more attractive option as an
acceleration platform compared to GPU.

7.2.7 Implication of Request Distributions. Figure 17 illustrates the
throughput of each index across six di�erent request distributions
as used in prior works [5, 10]: sequential, zip�an, hotspot, exponent,
uniform and latest. Across all query distributions, learned indexes
accelerated with SIA consistently show signi�cant performance
improvement, which ranges from 3.9× to 6.2× compared to the base-
lines. Note that zip�an, hotspot, and exponent distributions exhibit
skewed patterns, resulting in certain key ranges being accessed
more frequently than others, causing more node splits. As node
splits trigger cold trainings, it imposes performance overhead, while
we observe that its impact on the end throughput is negligible.

7.2.8 Implication of Lazy Delete �ery Handling. We analyze the
impact of lazy delete query handling on the performance of SIA-
accelerated learned indexes. We con�gure the cold training interval
to various durations: 5, 30, 100, and 300 seconds, and sweep the
delete query ratio from 5% to 15%, �lling the remaining queries
with read queries. We observe that at a deletion ratio of 5%, there
is a performance degradation of 3.2% when the training interval is
300 seconds. Meanwhile, with a deletion ratio of 10% and 15%, the
larger number of unhandled keys results in a greater performance
loss, which increases up 4.1% to 4.6%, respectively. Nonetheless,
the performance degradation remains at a marginal level, which
validates the viability of the lazy approach, particularly considering
the signi�cant costs associated with complete cold training.

8 ADDITIONAL RELATED WORK

Learned index structures. There has been a large body of prior
works [1, 9, 10, 12, 13, 26, 34, 41, 43, 54, 64, 73, 75, 76] for learned
index systems. RadixSpline [26] and PLEX [54] further optimize
learned index construction. Flood [43] and Tsunami [12] exploit the
learning approach for multi-dimensional indexes to automatically
optimize the index structure for the given data and query distri-
butions. On the other hand, SIA optimizes training via memoized
QRD algorithm enhanced by an accelerator and builds a system for
integration with learned index structure.
Learned index acceleration. Colin [75] builds and manages CPU
cache-friendly learned index structure on top of PGM-index, with
performing key insertions in place to better utilize the caching.
Anderson et al. [4] perform microarchitectural analysis of ALEX
on commodity CPU and show the impact of memory hierarchy
on read/write latency. Unlike these works that aim to bene�t from
microarchitectural optimizations on the CPU, SIA devises iterative
QRD to leverage computation reuse and further enhances the index
system by o�oading the training process to a separate accelerator.
QR decomposition accelerator. As the QR decomposition makes
up an essential building block of many modern applications, sev-
eral architectural design for accelerators has been studied in the
literature [6, 30]. Although the QRD unit is motivated from past
works, none of them use these in the context of learned index
systems. Moreover, SIA’s accelerator is designed to execute multi-
dimensional parallelism in the context of retraining models in
learned indexes, while QRD accelerator is a small function unit.

9 CONCLUSION

Thiswork o�ers SIA, an accelerated string-key learned index system.
These index structures require constant retraining of their machine
learning models to determine the mapping between keys and their
positions. SIA mitigates the bottleneck of the current systems that
incur huge overhead of training when the keys are updated. Train-
ing observes multi-fold issues, where it is ine�cient to execute
on the CPU, is serial across runs as it writes to the model, and
cannibalizes CPU resources from inference queries. Based on these
insights, SIA enhances the learned index training by leveraging
the mathematical property that keys can be updated incrementally,
and thus, can bene�t from computation reuse via memoization. SIA
further boosts this training on an energy-e�cient FPGA accelerator
and relieves CPU resources for inference, collaboratively o�ering
signi�cant speedup.
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