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Abstract—Deep neural network (DNN) video analytics is
crucial for autonomous systems such as self-driving vehicles,
unmanned aerial vehicles (UAVs), and security robots. However,
real-world deployment faces challenges due to their limited
computational resources and battery power. To tackle these
challenges, continuous learning exploits a lightweight “student”
model at deployment (inference), leverages a larger ‘teacher”
model for labeling sampled data (labeling), and continuously
retrains the student model to adapt to changing scenarios
(retraining). This paper highlights the limitations in state-of-the-
art continuous learning systems: (1) they focus on computations
for retraining, while overlooking the compute needs for inference
and labeling, (2) they rely on power-hungry GPUs, unsuitable for
battery-operated autonomous systems, and (3) they are located on
a remote centralized server, intended for multi-tenant scenarios,
again unsuitable for autonomous systems due to privacy, network
availability, and latency concerns. We propose a hardware-
algorithm co-designed solution for continuous learning, DACAPO,
that enables autonomous systems to perform concurrent exe-
cutions of inference, labeling, and retraining in a performant
and energy-efficient manner. DACAPO comprises (1) a spatially-
partitionable and precision-flexible accelerator enabling parallel
execution of kernels on sub-accelerators at their respective
precisions, and (2) a spatiotemporal resource allocation algo-
rithm that strategically navigates the resource-accuracy tradeoff
space, facilitating optimal decisions for resource allocation to
achieve maximal accuracy. Our evaluation shows that DACAPO
achieves 6.5% and 5.5% higher accuracy than a state-of-the-
art GPU-based continuous learning systems, Ekya and EOMU,
respectively, while consuming 254 x less power.

I. INTRODUCTION

Live video analytics is key to enable seamless functional-
ity of interactive autonomous systems, such as autonomous
driving vehicles [10]], [25], [35], [38], [42], [87]l, [93], un-
manned aerial vehicles (UAVs) [55], [56], [59], 160], [101],
and security surveillance robots [7]|-[9], [24], [71], [79],
[92]. Real-time analysis of live videos is indispensable for
comprehending rapidly changing environmental conditions, a
pivotal aspect that ensures the successful execution of the
autonomous systems’ missions.

Modern video analytics heavily relies on the capabilities
of deep neural networks (DNNs). However, the computational
demand to execute DNN inference on individual video frames
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Fig. 1: Overview of continuously learning video analytics on
autonomous systems. To address privacy, networking cost, and
latency concerns, autonomous systems exclusively use con-
strained computing resources to concurrently execute the three
continuous learning kernels — (1) inference, (2) retraining, and
(3) labeling — which presents a performance challenge.

is far beyond the capabilities of real-world systems. Although
sampling can decrease computational demands, it often com-
promises accuracy, especially in videos captured by moving
cameras, a frequent condition in autonomous systems.

To address this issue, continuous learning (CL), an emerg-
ing algorithmic methodology, has gained significant atten-
tion in recent years [5], [27], [34], [46]. This innovative
approach enables autonomous systems to perform inference
using lightweight “student” DNN models, which results in
reduced resource consumption. However, the limited gener-
ality of the lightweight student models gives rise to the data
drift problem, where live video data deviates from training
data. Continuous learning incorporates constant on-the-spot
retrainings, which introduce a new computational challenge,
as the systems must now handle not only inference, but also
labeling and retraining, as illustrated in Figure |1l We denote
these three tasks as continuous learning kernels in this paper.

Two recent pioneering works, Ekya [5] and RECL [46],
propose initial system designs for continuously learning video
analytics. Although these works have paved the way for a
new research direction, their direct deployment to autonomous
systems 1is infeasible due to the following reasons: (1) these
systems overlook the necessity of computation for label-



ing and inference, a factor that could be substantial for
battery-operated, resource-constrained autonomous systems;
(2) they assume excessively rich computation resources for
autonomous systems; and (3) they are designed to be deployed
on a remote centralized server, intended for multi-tenant
scenarios. For instance, Ekya [5] runs on a multi-GPU edge
server and RECL [46] offloads the retraining computation to
the scalable cloud, both largely focusing on the retraining
computations of multiple models.

In this paper, we propose a hardware-software co-designed
acceleration solution, DACAPO, that overcomes the limita-
tions of existing systems and enables effective deployment of
continuously learning video analytics on autonomous systems
without the need for remote access to abundant resources. In
designing DACAPO, we identify the following challenges:

o Challenge 1: DACAPO must offer significantly higher
performance and energy efficiency compared to the ex-
isting high-performance computing platforms such as
GPUs, to effectively implement continuous learning for
video analytics on battery-operated autonomous systems.

o Challenge 2: DACAPO requires a flexible and dynam-
ically reconfigurable accelerator architecture to rapidly
adapt to the changing resource demands of the three
continuous learning kernels when data drifts occur.

o Challenge 3: DACAPO must be able to capture the
resource-accuracy tradeoff of the continuous learning
kernels and efficiently utilize the computing resources to
maximize the resulting accuracy.

To address the aforementioned challenges, we make the

following contributions.

« Spatially-partitionable and precision-flexible accel-
erator architecture. We architect the DACAPO ac-
celerator, employing a spatially-partitionable architec-
ture, which can be dynamically composed into sub-
accelerators (SAs). The design principle aims to attain
flexibility for better resource utilization without imposing
unnecessarily large overhead to enable this adaptability.
To this end, the DACAPO accelerator is organized as
vertically-stacked rows of processing elements in which
the rows can be partitioned and grouped into two sub-
accelerators. A processing element in DACAPO performs
a vector dot product rather than a multiplication, which
we call Dot-Product Engine (DPE), leveraging recently
proposed MX-based precision-flexible arithmetic to un-
leash higher performance and energy-efficiency from the
accelerator. This spatial sharing and precision configura-
bility are the keys that enable DACAPO to obtain orders
of magnitude higher efficiency and allow the three kernels
to fully utilize the given resources for maximal accuracy.

« Spatiotemporal resource allocation algorithm for max-
imal accuracy. Resource requirements for the three
kernels vary depending on the runtime scenarios that
constantly change. A key insight driving our resource
allocation algorithm is that labeling plays a pivotal role
in the occurrence of data drifts for promptly collecting
retraining data with new data patterns, requiring relatively

more computing resources. To maximize accuracy using
the limited resources, we devise a spatiotemporal re-
source allocation algorithm that makes static (spatial) and
dynamic (temporal) decisions for resource allocations.
First, at offline, the algorithm statically partitions the
accelerator into two sub-accelerators, T-SA and B-SA,
based on the resource requirement of inference to keep
up with the input frame rate. Then, during runtime,
the algorithm dynamically detects data drifts through
constant accuracy validations and when it is detected, the
algorithm allocates more time slots for labeling until the
dataset is sufficiently updated (temporal decision).

To evaluate DACAPO’s effectiveness, we use three pairs of
(student, teacher) object recognition models (see Table [III)
and the BDD100K driving video dataset. We model three
types of data drift: (1) task change by addition or removal of
object labels, (2) transitions between daytime and nighttime,
and (3) location change between city and highway. These data
drifts are mixed to synthesize size different workload scenarios
representing diverse real-world situations that autonomous
systems would face. We develop DACAPO using Verilog
RTL and synthesize it using Synopsys Design Compiler with
TSMC 28nm technology. To cross-validate the cycle-accurate
behaviors of DACAPO, we also develop an in-house simulator
built upon SCALE-Sim [77].

Our evaluation shows that DACAPO achieves 6.5% and
5.5% higher accuracy than the two state-of-the-art GPU-based
continuous learning systems, Ekya and EOMU, respectively.
Furthermore, we observe that DACAPO achieves the accuracy
improvement, consuming 254 x less energy compared to the
GPU baseline. These advantages highlight DACAPO’s role
in connecting the algorithmic advancements in continuous
learning to their practical deployment on autonomous systems.
Our tools, including system and hardware simulators and
a continuous learning benchmark suite with datasets, are
available at https://github.com/casys-kaist/DaCapol

II. BACKGROUND

This paper aims to develop an acceleration solution for
continuously learning video analytics on autonomous systems.
In this section, we briefly outline the target problem and
introduce existing solutions.

A. Video Analytics in Autonomous Systems

Modern autonomous systems leverage compute-heavy deep
neural network (DNN) models for complex video analytics.
Constrained by limited resources, these systems struggle to
meet latency requirements, often requiring compromises that
can entail frame drops and a potential reduction in overall
analytical quality. Recently, using less capable yet lightweight
DNN models has been introduced as a viable solution [4]],
[36], [37], [48], allowing the systems to match the inference
rate with the frame rate. However, the customized models
present a new challenge known as data drift, where live video
data diverges from the training data, consequently reducing
the accuracy of the lightweight models.


https://github.com/casys-kaist/DaCapo

B. Continuously Learning for Video Analytics at Edge

To address the data drift problem, a large body of liter-
ature [5]], [46], [82], [85] has explored continuous learning,
which aims to continuously adapt models to newly appearing
data. This approach allows the models to stay up-to-date with
the changing data distribution. While continuous learning is a
promising approach to reduce compute demand for inference,
it introduces new compute load for constant retraining over
newly collected data as well as labeling the retraining data
by running inference for large, state-of-the-art models, often
referred to as feacher models [66]]. The challenge arises from
the necessity of executing the three distinct yet compute-
intensive kernels, each affecting the final accuracy differently,
creating a complicated tradeoff space.

C. Continuous Learning Systems for Video Analytics

Inspiring prior works, Ekya [5]], and RECL [46]], are pi-
oneering efforts that address the challenge, approaching it
from a system design perspective. Ekya and RECL offer
resource allocation and scheduling solutions tailored to GPU-
accelerated live video analytics platforms. In particular, they
address the “at-scale” problem, where the systems are required
to manage and process multiple DNN models specific to
various video streams concurrently. Optimizing for multi-
tenant workload scenarios, the existing systems are centered
on facilitating resource sharing across different models, re-
quiring the use of mid-size to cloud-scale servers equipped
with multiple compute-powerful computing platforms such as
datacenter-level GPUs. A recent work, EOMU [49], takes
a similar yet different approach by proposing a log-based
adaptive resource allocation technique for edge-cloud contin-
uous learning system. In contrast, this work aims to focus on
enabling single-task video analytics on resource-constrained
autonomous systems running the three continuous learning
kernels, a distinctive and novel challenge.

III. CHALLENGES AND OPPORTUNITIES

In this section, we examine the limitations of current
solutions, identify key challenges, and explore potential op-
portunities for improvement.

A. Unveiling the Dilemma in Continuous Learning

To understand the performance implications, we per-
form a preliminary experimental study, using two pairs of
Student and Teacher object recognition models: (S:ResNetl8,
T:WideResNet50) and (S:ResNet34, T:WideResNet101). For
the experiments, we use an NVIDIA 3090 and a Jetson Orin’s
GPU, representing datacenter-scale and autonomous system-
level GPUs respectively. As a baseline for continuous learning
systems, we built Ekya under an idealized assumption that the
system can optimally utilize the provided GPU resources to
obtain the maximum achievable accuracy.

Figure 2| reports the accuracy results of student/teacher mod-
els compared to the Ekya baseline, measured by calculating
the ratio of correct predictions to the total number of classi-
fications. Dropped frames produced by insufficient computing
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Fig. 2: Accuracy comparisons of Ekya versus student
and teacher models. Student and teacher models are non-
continuous learning cases. The experiments are conducted on
RTX 3090 and Jetson Orin. The accuracy gap between the two
GPUs is attributed to inevitable frame drops due to a lack of
computing resources.

resources are considered as incorrect results. The RTX 3090
has sufficient compute resources, resulting in no frame drops.
Therefore, the results are solely evaluated by their algorithmic
performance. The teacher models always substantially outper-
form student models, exhibiting their algorithmic superiority.
While Ekya employs the student model for inference, its
accuracy often approaches or even exceeds that of the teacher
model since Ekya can adeptly customize the student model to
suit the specific system environment. However, as we change
the compute platform from RTX 3090 to Orin, for both teacher
and Ekya baselines we observe significant accuracy drops.
These results demonstrate that continuous learning effectively
mitigates computational bottlenecks, but still notable accuracy
loss persists when insufficient resources are provided, the key
challenge addressed in this work.

Existing continuous learning systems function effectively only
with substantial computational resources, a condition in-
compatible with the limitations of autonomous systems. This
insight underscores the necessity for specialized hardware
innovation, crucial for obtaining levels of performance and
efficiency otherwise unachievable, thereby unleashing the full
potential of continuous learning in autonomous systems.

B. Workload Characterization of the Three Kernels

A straightforward solution for the aforementioned challenge
is to develop a high-performance accelerator with ample com-
pute resources and exploit time-multiplexing to flexibly sched-
ule the three kernels interchangeably on the chip. However,
such a time-sharing technique would limit resource utilization
since the three kernels offer different levels of parallelism (e.g.,
inference offers much lower data parallelism than retraining).
Alternatively, the three kernels can be spatially parallelized by
designing an accelerator with three separate sub-modules, with
each module dedicated to a specific kernel. We found that this
approach is also suboptimal since the computational demands
of the kernels exhibit temporal variations at runtime.

To understand the workload of continuous learning, we
explore the computational demands of running a continuous
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Fig. 3: MAC operation breakdown of the three kernels and
total FLOPS for the entire experiment runs.

learning system for 120 seconds, measuring these in FLOPs,
and examine how each of the three kernels contributes to the
overall FLOPs count. Figure [3| presents the results, with the
stacked bars illustrating the proportional distribution of FLOPS
for inference, retraining, and labeling from top to bottom,
while the line graph delineates how the total FLOPs scale over
time. We observe a notable shift in proportions: the proportion
allocated to retraining surges from 26.0% to 82.3% as data
sampling rates for labeling and number of epochs for retraining
increase, while inference and labeling decrease from 57.8%
and 27.1% to 9.1% and 7.0% respectively. The results also
show that increasing the sampling rate and number of epochs
improves accuracy, albeit at the expense of increased FLOPs.

The overall accuracy of a continuous learning system
is jointly influenced by the interplay of the three kernels,
whose contributions shift based on hyperparameters, leading
to varying computational demands. Inspired by this insight,
we design the DACAPO accelerator to enable dynamic and
flexible resource allocation among the kernels. This approach
aims to optimize resource efficiency, consequently improving
the final accuracy.

C. Opportunities from Low-Precision Arithmetics

As discussed earlier, effective continuous learning in an
autonomous system demands not just exceptional performance
but also significant energy efficiency, which motivates the ex-
ploration of strategies that can achieve enhanced performance
and efficiency, without sacrificing accuracy. Low-precision
arithmetic through quantization has been widely adopted to
significantly reduce the computational resource demands for
training and inference [[19]], [23[], [SO], [73]. Among various
quantization formats, block floating point (BFP) has recently
gained prominence owing to its hardware-friendly character-
istics and ability to support a wide range of real values [19],
[23], [73]. BFP groups a set of floating point values, forces
them to have a shared exponent by shifting the mantissa
accordingly, and stores the group of truncated mantissa bits
along with the shared exponent. This way, most computations
happen in the integer domain, which is significantly cheaper
than single-precision floating-point (FP32) arithmetics, while
still offering FP32-like algorithmic behaviors.
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Fig. 4: Workflow of a DACAPO-based continuously learning
video analytics system.

Particularly, a recent work from Microsoft [[19] proposes
a customized block floating point format, called MX (Micro-
eXponent), and demonstrates the effectiveness on both training
and inference. The prior work also suggests that in general,
training requires higher precision (MX9) than inference (MX6
or MX4), and the best-fit MX precision varies depending on
the particular models. However, the MX accelerator is not
precision-flexible, lacking support for multiple precisions on
a single hardware, which is not well-suited for continuous
learning scenarios where an accelerator should simultaneously
perform both training and inference for different models.
Therefore, to effectively employ MX and fully realize the po-
tential for continuous learning, there is a need for customized
architectural techniques, which is one of the goals of this work.

While MX offers promising opportunities, the accelerator
needs to support various MX precisions, switchable at runtime.
This flexibility is essential to fully capitalize on the advantages
of mixed computations in both inference and retraining exe-
cutions across the three kernels.

IV. OVERVIEW OF DACAPO’S SYSTEM WORKFLOW

Figure M illustrates the overall workflow of DACAPO-
accelerated continuous learning in an autonomous system.
@ System initialization. The system needs to be initialized
with the student and teacher DNN models for inference and
labeling. These models are pre-trained over the general dataset
without having any specific context that the system is actually
used for. We assume that the hyperparameters and optimization
techniques for on-the-fly retraining are pre-determined and not
adjusted at runtime. Additionally, we also assume that the
frame rate of input video and its resolution are a priori known
knowledge and never change at runtime.

@ Performance estimation. The subsequent stage involves
our simulation-based performance estimator, which utilizes
the architecture of the specified student/teacher models and
the hardware specifications of the DACAPO accelerator to
approximate the throughput of the three kernels. In this phase,
the estimator examines every supported MX precision, ranging
from MX4 through MX6 to MX9, to assess its impact on
accuracy. Our observations show that the models evaluated
achieve stable outcomes when using MX9 for retraining and
MX6 for inference/labeling, whereas utilizing MX4 leads to
considerable accuracy degradation in both scenarios. Note that
this observation aligns with the experimental findings reported
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Fig. 5: Overall architecture of DACAPO.

in the original MX paper [[19]]. This crucial information is then
relayed to the resource allocators in subsequent stages, aiding
them in their decision-making processes.

© Offline spatial resource allocation. Utilizing the per-
formance estimation, our spatial resource allocator calculates
the minimum number of rows needed for B-SA to process
inferences for input frames, ensuring it matches the input
frame rate. Although the MX precisions remain constant
during runtime, precision flexibility is still necessary because
a row may be allocated to either T-SA or B-SA based on the
decisions made in spatial resource allocation.

© Online temporal resource allocation. While B-SA con-
sistently handles inference computations, T-SA alternates be-
tween retraining and labeling tasks through time-sharing. In
formulating the temporal resource allocation algorithm, we
exploit an empirical insight that when data drifts occur, rapidly
labeling data with a new distribution is more crucial than
conducting additional retraining iterations. For DACAPO to
respond effectively to data drifts, it must first detect them.
To achieve this, DACAPO tracks accuracy trends in real-time,
employing a small portion of the labeled training dataset
as a validation set for identifying any data drifts. Upon
their detection, DACAPO adjusts its time allocation, favoring
labeling over retraining. This shift in temporal resources aids
the system in quickly recovering from accuracy losses caused
by data drifts. The empirical evidence supporting this approach
will be detailed in Section [VII}

V. DACAPO ACCELERATOR ARCHITECTURE

Figure [5] presents the overall architecture of the DACAPO
accelerator. The design is built upon a standard systolic
array architecture, which is composed of two-dimensional
processing engines. There are two primary differences com-
pared to conventional TPU-like systolic array architectures:

(1) the accelerator is spatially partitionable into Top Sub-
Accelerator (T-SA) and Bottom Sub-Accelerator (B-SA); and
(2) the processing engines are not simple multiplication-and-
accumulation (MAC) units, but dot-product units that can
perform vector dot products of 2-bit, 4-bit, and 8-bit operands,
depending on the MX precision mode. This section will
describe the two architectural techniques in more detail.

A. Spatially-Partitionable Architecture

Why revisit spatially partitionable architectures? Spatial
partitioning techniques for neural network accelerators have
been explored in previous works, such as Planaria [26] and
Dataflow mirroring [52]. Planaria utilizes architectural fis-
sion to dynamically compose processing elements into an
arbitrary number of sub-accelerators, enabling efficient multi-
DNN inference and adherence to service-level objectives
(SLOs). However, Planaria’s on-chip buffer partitioning and
inter-buffer networks are quite complex. Dataflow mirroring
proposes a simpler four-way partitioning scheme for systolic
arrays, prioritizing efficiency over flexibility. While it provides
simpler on-chip memory and networking architecture, it tar-
gets multi-tenant inference serving, which demands excessive
adaptability than continuous learning.

To address this, we introduce a two-way spatial partitioning
approach that effectively balances architectural simplicity with
the necessary flexibility, efficiently facilitating the parallel
execution of the three kernels.

Row-granular processing element organization. For sim-
plicity, we propose to group the two-dimensional processing
elements of systolic arrays into one-dimensional rows, which
can be composed into two groups: T-SA and B-SA. In typical
systolic arrays, the input, weight, and output tensors flow
either horizontally or vertically, depending on which data is
stationary. In designing the dataflow for DACAPO, leveraging
the property that both weights and outputs flow vertically, we
propose to enable vertical communication channels in “both”
directions, placing weight and output buffers at both the top
and bottom of the systolic array. This way, regardless of
how the rows are assigned to T-SA and B-SA, weights and
outputs can flow vertically, so that the two stacked SAs can
simultaneously run independent matrix-matrix multiplications
without interfering with the other section. While we can
support both weight and output stationary designs, we employ
output stationary design for our RTL prototype.

Programmable memory interface. The proposed spatial par-
titioning approach requires T-SA and B-SA to place tensors
at the input (I) and weight (W) buffers differently, as their
dataflow differs. We do not perform this tensor transfor-
mation in software, but a programmable memory interface
orchestrates the memory layout. Once our resource allocation
algorithm determines the row assignments for T-SA and B-
SA, it also reprograms the memory interface to feed the
operands into the on-chip buffers in a way that the sub-SAs can
directly read. The memory controller is designed to support
MX and tensor manipulation operations using MX metadata
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decoder and bitwise concatenator to produce DPE operands.
Note that this programmable memory interface is largely based
on the memory interface used by several prior work, including
MX [19], FAST [73]l, and BitFusion [80].

B. Precision-Flexible Dot-Product Engine

Another dimension of reconfiguration in the DACAPO accel-
erator is MX precision [[19]. While it is statically determined
for each kernel, every processing element must support multi-
ple MX precisions, since they can be assigned to different SAs.
We describe the microarchitectural design of these processing
elements, which we call Dot-Product Engine (DPE).

MicroeXponent (MX) format. Figure E] illustrates how MX
compresses a block of values differently from the conventional
block floating point format. As in regular block floating point,
MX compresses 16 address-adjacent values in memory as a
block. While the choice of block size is orthogonal to our
DPE design, we use 16 as it is commonly used in most
prior works [19]], [[67], [73]. However, for clearer illustration
purposes, Figure [6] employs a block size of 4. MX first
identifies the largest exponent within a block using a max tree
and chooses it as the shared exponent. Each block consists
of sub-blocks where its values share a 1-bit microexponent
(MX). The sub-block size can vary, but we use 2, the same
default value used in the original paper. MX compares the
maximum subgroup exponents obtained from the leaf stage
of max tree with the shared exponent and sets the MX bit
to 1 if every subgroup exponent is smaller than the shared
exponent, effectively enlarging the supported dynamic range
and thus enhancing accuracy resilience in lossy compression.
After determining the shared exponent and microexponents,
mantissa values are shifted accordingly and at last, truncated
from 23-bit of single-precision floating point to 2 (MX4), 4
(MX6), or 7 bits (MX9).

Microarchitectural opportunities from prior works. As the
name implies, DPEs perform vector dot products between two
MX-compressed vectors. The DPE microarchitecture is built
upon techniques proposed in two prior works, Bit Fusion [80]
and SIGMA [74]. Bit Fusion [80] proposes bit-parallel dy-
namic fusion of small-bit width multiplications for quantized
neural network inference. SIGMA [74], on the other hand,
proposes a forwarding adder network (FAN) that effectively
reduces the results of multiple dot products using an adder
tree structure equipped with a forwarding datapath. Inspired
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by these works, we leverage the proposed techniques in prior
works for our DPE design, customizing them for performing
dot products between MX-compressed vectors.

Dot-product engine: a hierarchical architecture for
precision-flexible dot-product. Figure [/| illustrates the mi-
croarchitectural details of a DPE. To support various
MX formats, we employ a hierarchical multiplication-and-
accumulation (MAC) tree that can support 16x2-bit (MX4),
4x4-bit (MX6), or 1x8-bit (MX9) in parallel. While the
different MX modes require different numbers of mantissa
values, the memory interface partitions the mantissa values
in the granularity of 2-bits and supplies an array of 2-bits to
the corresponding 2-bit multipliers. When it runs in the MX4
mode, every 2-bit multiplier performs independent multipli-
cations, while for MX6 and MX9 mode, the results of 2-bit
multipliers are accumulated by the hierarchical adder trees,
producing 4-bit and 8-bit multiplication results, respectively.

Intra-DPE forwarding datapath and FP32 generator. Note
that the multiplication results must be grouped in a specific
size (e.g., 16) and then compressed into the MX format.
Therefore, the accumulated results from the hierarchical MAC
tree need to be collected at the FP32 generator, which re-
quires direct result bypassing. To facilitate this, we devise
a hierarchical result forwarding datapath, which can send
multiplication outcomes through the MAC tree to the FP32
generator from any multiplier level. The rate of FP32 result
generation depends on the MX format. For instance, MX4
completes all multiplications and accumulations for a dot
product in just one cycle, whereas MX6 and MX9 require
4 and 16 cycles, respectively, due to the serial processing
of subsets of the 16 multiplications (i.e., MX9: 16 cyclesx 1
multiplication and MX6: 4 cyclesx4 multiplications). After
the FP32 generator finishes the accumulations, it converts the
final result into a floating-point value.

Inter-DPE communication. Each DPE has bidirectional inter-



DPE communication channels to its north and south. It also
has a horizontal channel, which pipelines the input activations
from west to east, as in existing systolic array designs.
The two vertical channels are activated simultaneously. One
streams weight parameters to DPEs, while the other drains
accumulated results to output buffers.

C. Precision-Conversion Unit

Note that when a set of results are produced by a SA
and received by the output, they are floating-point values,
not compressed in MX format. Therefore, the DACAPO ac-
celerator comes with two precision-conversion units for the
two SAs, which partition the floating-point output values into
MX blocks of size 16. For inference and labeling, only row-
major matrices are produced by the precision-conversion unit.
However, in the case of retraining, the precision-conversion
unit carries out column-major MX conversion, in addition to
the default row-major conversion, because transposed matrices
are needed for gradient computation and weight updates.

VI. SPATIOTEMPORAL RESOURCE ALLOCATION
ALGORITHM

This section describes DACAPO’s resource allocation algo-
rithm, which is pivotal for optimizing continuous learning.

A. Algorithm Overview

Our resource allocation algorithm operates on both spa-
tial and temporal dimensions, determining spatial allocations
statically during the offline phase and continuously adjusting
temporal allocations dynamically in the online phase. Un-
like conventional fixed-window periodic retraining methods,
DACAPO’s temporal resource allocation mechanism promptly
alternates between the retraining and labeling phases, with
their durations governed by the algorithm-determined number
of samples for each cycle. At the end of each cycle, DACAPO
assesses the impact of these phases on accuracy and adjusts
temporal resource allocation dynamically.

This algorithm requires maintaining a fixed-capacity sample
buffer to store labeled samples. For retraining, a subset is
drawn from this buffer, which is subsequently updated with
newly labeled data in the following labeling phase. At the end
of retraining, DACAPO compares the validation accuracy of
existing data with that of newly labeled data to detect data
drift. This facilitates DACAPO to make informed decisions
regarding resource allocation for labeling in upcoming phases.
In the following section, we provide a formal description of
the algorithm’s operation.

B. Hyperparameters for Resource Allocation

Table |I| shows the hyperparameters relevant to spatiotempo-
ral resource allocation. They are primarily concerned with the
number of samples and influence the duration of retraining and
labeling phases. As DACAPO operates without a fixed window
time, the values assigned to these hyperparameters dictate the
scheduling of the retraining and labeling phases.
Hyperparameters for retraining. For retraining, DACAPO
loads a subset of samples from the sample buffer with buffer

TABLE I: Notations of hyperparameters used in DACAPO’s
spatiotemporal resource allocation algorithm.

Retraining Hyperparameters
Ny Number of samples for retraining
N,  Number of samples for validation
Labeling Hyperparameters
N, Number of samples to label at usual
Niga  Number of samples to label at data drift
Spatial Allocation Hyperparameters
Number of DPE rows at T-SA
Number of DPE rows at B-SA

Rtsa
Rbsa

capacity C. The number of samples for retraining (/V;) and
validation (V,) are predefined, while N, is set to half of V;.
These hyperparameters are decided according to the model
size, as it has a direct impact on the computational cost
required for retraining.

Hyperparameters for labeling. The quantity of samples for
labeling is specified by two distinct hyperparameters: N; and
Nigq. N; specifies the standard number of samples to be
labeled under normal conditions, while N;44 is an increased
number of samples to be selected for labeling when data drift
is detected. In DACAPO, N;4q4 is established as a multiple of
N;. We empirically select this multiple to be four.

Hyperparameters for spatial allocation. The number of DPE
rows at T-SA and B-SA are defined as R;s, and Rps,. To
optimize them, we prioritize the R;s, where the retraining
and labeling phases run on, while ensuring that the Rpsq,
the inference resources, is sufficient to meet the latency
requirements of streaming input frames.

C. Spatiotemporal Resource Allocation Algorithm

Algorithm |I| describes the temporal resource allocation
algorithm in detail. Line I-2: DACAPO allocates resources
for T-SA and B-SA during the offline phase. Line 4-7: In
the retraining phase, DACAPO evaluates the updated model’s
weights (W,,,;) using a validation dataset (D, ) sampled from
the current sample buffer (B.,,). Note that as validation
only involves forward-pass processing on T-SA, its compu-
tational cost is significantly lower than that of retraining.
The validation accuracy assesses the new model’s adaptability
to the accumulated dataset. Line 8-10: During the labeling
phase, DACAPO matches inference outputs with corresponding
samples to evaluate the current model’s inference accuracy
on the newly sampled dataset. Line 11: If the validation
accuracy subtracted from the labeling accuracy is lower than
the threshold (V;,.), it indicates data drift. Line 12-13: Upon
detecting data drift, DACAPO clears the current sample buffer
to remove outdated samples, and labeling time is extended
to ensure that these better-suited samples are included in the
dataset for subsequent phases. Line 14: Once all new samples
are labeled, DACAPO updates its sample buffer. With this
algorithm, DACAPO adeptly detects and addresses data drift by
dynamically allocating labeling time based on the validation
accuracy from a segment of the sample buffer.



Algorithm 1: Spatiotemporal Resource Allocation

Input: By, : Current sample buffer

Weur @ Current weight of student

Cy : Capacity of sample buffer

Vine @ Threshold value to detect data drift
Ni : Retraining hyperparameters

Niidq : Labeling hyperparameters

/I Spatial resource allocation
1 Risa, Rpsa < GetSpatialAllocation () ;
2 SetAccelerator ( R;sq, Rpsa) ;

/I Temporal resource allocation
3 while true do
/I Retraining
Dy, D, + GetData (B, N¢, Ny) 5
Wet < Retrain (W, Dy) ;
Wewr < UpdateWeight (W,,.¢) ;
ACCyq) +— Valid (Wey, Dy) s

/| Labeling

8 D; + Label (N;) ;

9 Opra < GetlnferOutputs (D) ;
10 accyqp < Evaluate (Oprq, Dy) ;

/I Check data drift & update Buffer
11 if acciep — accyqr < Vipr then

12 ResetBuffer (B, ) ;

13 L D; < Label (Njgqg — N;) + Dy;

4 | Beyr < UpdateBuffer ( By, Dy, Cy) ;

N QR

TABLE II: Descriptions of workload scenarios for continu-
ously learning video analytics on autonomous systems.

Name Weather Data Drift Types (Only 1)
S1 Clear C .
S Overcast Label Distribution
S3 Clear s .
S4 Snowy Label Distribution, Time of Day
S5 le:ar Label Distribution, Time of Day, Location
S6 Rainy
Name Composition of Data Drift Types (All 4)
Eg; Label Distribution, Time of Day, Location, Weather

D. Hyperparameter Tuning for Different Environments

As noted in Section [VI-Bl we use a fixed set of empir-
ically determined hyperparameters for the resource alloca-
tion algorithm. To determine the hyperparameters, we use
the BDDI100OK dataset (see Section [VII-A) and exhaustively
explore the hyperparameter search space to establish their
values, consistently finding that the chosen settings outperform
alternatives across various environmental scenarios, suggesting
a robust insensitivity to scenario changes. Given this empirical
insight, we choose to use an offline hyperparameter tuning
method, leaving the online hyperparameter auto-tuning to
future work. Before deploying autonomous systems in real-

(a) City, Daytime, Traffic (b) City, Daytime, All

3.9% 2.6%
38.7%
17.1% 60.6%
19.8%
16.5%
== Car mmm  Traffic light B Truck Others
Traffic sign mmm  Person = Bus

Fig. 8: Different label distributions within distinct 60-second
segments of an example scenario.

world environments, DACAPO requires offline hyperparameter
tuning to identify the optimal settings. The tuning is required
only once for each autonomous system, representing a cost
that is not only inexpensive but also amortizable over time.

VII. EVALUATION
A. Methodology

Dataset and data drifts. We use BDD100K [97]], a compre-
hensive live video driving dataset with an abundance of varied
situations. To adapt it for classification, we crop individual
objects within the video frames and arrange them in chrono-
logical order. To create data drifts, we characterize videos
based on three key attributes: Label Distribution, Time of Day,
and Location. There are two types of “Label Distribution”: (1)
Traffic Only which focuses on traffic-related labels, and (2) All
which includes a broader range of labels, such as pedestrian,
bicycle, and motorcycle. “Time of Day” is classified into
Daytime and Night to account for varying lighting conditions.
“Location” is divided into City and Highway, each presenting
unique driving environments. This setup facilitates the evalua-
tion of DACAPO’s performance in various data drift situations,
providing insights into its flexibility and adaptability.
Scenarios. Every scenario constructed for evaluation is created
by concatenating a series of video clips. Each video is treated
as a collection of frames within the scenario, unfolding over a
duration of 20 minutes, at a frame rate of 30 FPS. We develop
three distinct types to capture diverse data drift scenarios
including (1) 6 regular scenarios with single data drift at
a time (S1-S6), and (2) 2 extreme scenarios with 4 data
drifts occurring at the same time (ES1 and ES2). Table [M]
provides the details of 8 scenarios and Figure|[§|shows the label
distributions present across different segments of scenarios.

DNN models. We evaluate DACAPO’s performance on object
classification tasks using six DNN models listed in Table [[TI]
These models are paired as student and teacher models: (1)
ResNet18 and WideResNet50, (2) ViT-B/32 and ViT-B/16, (3)
ResNet34 and WideResNet101.

Accuracy metric. DACAPO differs from other baselines as
it does not utilize a window time. For a fair comparison, we



TABLE III: Specifications of the evaluated DNN models.

Type Name Parameters GFLOPs
ResNet18 11.7M 1.82
Student ResNet34 21.8M 3.67
ViT-B/32 88.2M 4.37
WideResNet50 68.9M 11.43
Teacher ViT-B/16 86.6M 16.87
WideResNet101 126.9M 22.80

TABLE IV: Evaluated GPU and DACAPO platforms.

Device Jetson Orin DACAPO
Technology 8 nm 28 nm
Area N/A 2.501 mm?
Frequency 1.3 GHz 500 MHz
Power 15-60 W 0.236 W
DRAM LPDDRS5 LPDDRS5
Bandwidth 204.8 GB/s | 204.8 GB/s

assess its averaged accuracy in the scenarios over time slices
corresponding to the window period.

Retraining and inference hyperparameters. The learning
rate of retraining is set to 1073, and we use SGD optimization
with batch size of 16. For inference, we use batch size 1.
While the DACAPO hardware supports MX4, MX6, and MX9
precision modes, we use MX9 (7-bit mantissas) for retraining
and MX6 (4-bit mantissas) for inference.

Hardware development and synthesis. Our DACAPO pro-
totype constitutes of a systolic array with 16x16 DPEs and
a 96KB on-chip SRAM. Note that while our prototype is
designed as a tiny chip, DACAPO could scale the number
of DPEs to larger configurations (e.g., 32x32) or multiple
DACAPO chiplets could be packaged together if there is a
need. For evaluation, we implement Verilog RTL design, and
verify the results through an RTL simulator. We synthesize
in 28nm CMOS technology using Synopsys Design Compiler
and CACTI, which provide the dynamic/static power and area
of each component of DACAPO, as reported in Table We
also develop an in-house cycle-accurate software simulator to
measure the execution cycles of DPE cores.

GPU. We evaluate DACAPO against NVIDIA Jetson Orin, a
GPU commonly used in autonomous system computing envi-
ronments, specifications of which are provided in Table
Out of the multiple power options provided, we use two
options: high power (default power settings) and low power
(30W power constraints) in our evaluations, to understand the
behavior of our workload on low-power GPUs.

System simulator implementation. To measure end-to-end
accuracy in continuous learning with hardware-based retrain-
ing and labeling phases, we develop a system simulator, which
uses the accelerator simulator results. It simulates the runtime
behaviors of a DACAPO-equipped autonomous system, while
the accuracy evaluation is performed on the GPUs. Prior
to starting continuous learning, the system generates DNN
cycle statistics for the partitioned systolic array, informing
the system about the samples processed per phase within a

given timeframe. This information guides the execution of
continuous learning jobs on the GPU, aligning with the sched-
uled hardware allocation. By integrating hardware simulation
and GPU kernel execution, our approach simulates end-to-end
accuracy and the spatiotemporal allocation algorithm within
our continuous learning system.

Baselines. We compare two DACAPO systems with several
baseline variants, represented by the combinations of their
hardware platforms and resource allocation methods. For
both baseline and DACAPO variants, we use two hardware
platforms, (1) NVIDIA Orin GPU, and (2) our DACAPO
accelerator. We select two state-of-the-art continuous learning
systems as the baseline: (1) Ekya [5] sets the retraining
configuration through a profiling process at every window,
and (2) EOMU [49] selectively triggers the retraining within a
shorter window and determines the training configurations by
the retraining manager. Below, we describe all the compared
continuous learning systems categorized by their combinations
of hardware and resource allocation techniques.

¢ OrinLow-Ekya. With this baseline, we examine how
power levels influence Ekya’s performance on au-
tonomous systems in low battery conditions. Orin sup-
ports multiple power options, ranging from 15W to 60W.
“OrinLow” represents Orin using the 30W option, which
consumes 127 x more power than DACAPO. This baseline
sets the GPU’s maximum frequency to 624.8MHz, the
closest to DACAPO’s 500MHz.

« OrinHigh-Ekya. We evaluate the performance of Ekya
on Orin’s default power setting (i.e., 60W) without power
constraints, comparing it to DACAPO on a sufficiently
powered autonomous system. This baseline consumes
254 x more power than DACAPO.

o OrinHigh-EOMU. We assess the performance of EOMU
on Orin GPU at the default power setting. This baseline
uses shorter window times to detect data drift and trigger
the retraining process. We set 10 seconds as the window
time for EOMU according to its paper.

o« DACAPO-Ekya. This baseline represents a DACAPO-
accelerated autonomous system using Ekya’s resource
allocation and system configuration mechanism.

B. Accuracy Comparison

Figure [9] presents a comparison of the end-to-end accuracy
results among the aforementioned continuous learning system
variants. We compare the baselines to the two DACAPO varia-
tions with different resource allocation methods: (1) DACAPO-
Spatial: optimized static resource allocation within a pre-
determined window time, and (2) DACAPO-Spatiotemporal:
dynamic spatiotemporal allocation responsive to data drift.

OrinLow-Ekya. When we use Orin with the low-power mode,
the entirety of three pairs we used for evaluation offer signifi-
cantly low accuracy, which ranges from 20.8% to 74.8%. For
all experiments, we prioritize resource allocation for inference,
incurring no frame drops that largely affect the final accuracy.
Therefore, the limited accuracy results is solely attributed to
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Fig. 9: End-to-end averaged accuracy of different continuously learning autonomous systems on six runtime scenarios.

insufficient computation resources offered for retraining and
labeling. In particular, the (ResNet34, WideResNet101) pair
demonstrates notably lower accuracy compared to the others
since the relatively large model size requires a substantial por-
tion of the Orin GPU’s computational resources for inference,
leaving minimal resources available for the other two kernels.

OrinHigh-Ekya and OrinHigh-EOMU. We also compare the
Orin GPU baselines with the highest power setting, OrinHigh-
Ekya and OrinHigh-EOMU, to examine the full capabilities
of NVIDIA’s autonomous system solution. While the two
obtain a significant accuracy improvement of respective 11.5%
and 13.0% in comparison with OrinLow-Ekya, it is still
not closely reaching RTX3090-CL, which suggests potential
unleashed benefits of the proposed acceleration solution. In-
tuitively, when evaluated on the toughest case of (ResNet34,
WideResNet101) pair, the two see the largest gains of 45.2%
and 43.9% improvements, respectively. We observe a slight
difference between Ekya and EMOU since both are based
on an assumption that labeling and training are offloaded
to remote servers, which makes EOMU’s improved resource
allocation method marginally influential on the end accuracy.

DACAPO-accelerated systems. To better understand the im-
plication of the resource allocation algorithm on the DACAPO
hardware, we populate three DACAPO-based system vari-
ants using our Spatial and Spatiotemporal resource allocation
methods along with Ekya. While the DACAPO accelerator
offers significantly higher raw performance, we observe that
DACAPO-Ekya does not always outperform the Orin base-
lines significantly. This is because Orin uses significantly
higher precision (i.e., 32-bit singe-precision FP), while DA-
CAPO leverages low precision (i.e., MX4 to MX9) for higher
throughput, which can negatively impact the accuracy behav-
iors depending on the used models. Particularly for the ViT
models, we notice that DACAPO-Ekya performs poorly even
compared to the Orin baselines since ViT models often have
relatively larger precision sensitivity than other models [61]],
[98]. Similarly, DACAPO-Spatial offers superior performance
compared to the Orin baselines, while the gap is marginal.

On the other hand, when employing DACAPO-
Spatiotemporal, the accuracy progresses towards the highest
level among all other continuous learning systems, akin to
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completing the “last mile” in a journey towards optimal
performance under the computational resources of the
DACAPO hardware. Concretely, DACAPO-Spatiotemporal
achieves significant accuracy gains over OrinHigh-Ekya
and OrinHigh-EOMU, which are respectively 6.5% and
5.5% improvements. The results suggest that our hardware-
algorithm co-designed acceleration approach effectively
unlocks continuous learning’s full capabilities and successfully
addresses the “resource wall” challenge.

C. In-Depth Analysis on Resource Allocation Algorithm

We now delve into the in-depth analysis of accuracy change
over time in a specific experiment using scenario S1.

Accuracy over time. To better analyze the effectiveness
of DACAPO-Spatiotemporal over DACAPO-Spatial and the
Orin baselines, Figure [I0fa) and Figure [I0[b) show accu-
racy change over an extended timeframe, using (ResNetl§,
WideResNet50) and (ResNet34, WideResNet101) model pairs.
In both pairs, DACAPO-Spatiotemporal works better than
DACAPO-Spatial and the Orin baselines as they lack ability
to promptly adapt to data drift occurrences. The Ekya and
Spatial systems use a fixed predetermined window time,
which lacks situational awareness within the dataset. How-
ever, DACAPO-Spatiotemporal shows better adaptability to
environment changes through iterative retraining as required.
EOMU is designed to trigger frequent retrainings, showing
comparatively better accuracy behaviors than Ekya, while the
Orin’s resource insufficiency results in its limited gain.

Data drift cases. To analyze the accuracy changes in finer
detail, Figure [I0|c, d) and Figure [I0fe, f) zoom in on spe-
cific intervals of interest in Figure [T0fa) and Figure [I0[b),
respectively, allowing for a more focused analysis of accuracy
variations observed in these time frames. Figure [I0{c) and
Figure [I0|(e) illustrate instances of data drifts where DACAPO-
Spatiotemporal demonstrates its effectiveness, swiftly recov-
ering from these drifts via regular retraining sessions. This
results in superior performance compared to DACAPO-Spatial,
with maximum improvement margins of 13.1% and 12.4%
for the two pairs, respectively. Conversely, Figure [T0(d) and
Figure [I0(f) illustrate two suboptimal cases where DACAPO-
Spatial outperforms DACAPO-Spatiotemporal. During certain
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Fig. 10: Accuracy over time. To illustrate the time-series accuracy pattern, we display the average accuracy recorded at 15-
second intervals. Each colored dot on the line indicates the completion of a retraining phase.
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Fig. 11: Scheduling decisions of temporal resource allocation
over time: (a) ResNetl8 & WideResNet50, (b) ViT-B/32 &
ViT-B/16, and (c) ResNet34 & WideResNetl01. DC-S is
DACAPO-Spatial and DC-ST is DACAPO-Spatiotemporal.

periods, DACAPO-Spatial exhibits higher accuracy, with max-
imum margins of 5.5% and 5.3%, respectively. However, the
overall accuracies of DACAPO-Spatiotemporal and DACAPO-
Spatial from w; to wg stand at 82.4% and 81.7% in Fig-
ure [I0[(d), and 79.7% and 78.0% in Figure [T0(f), respectively.
Even in its suboptimal cases, DACAPO-Spatiotemporal main-
tains competitive performance with DACAPO-Spatial.
Additionally, Figure [I0[a) and Figure [I0[b) also delineate
that the Orin baselines almost consistently provide lower
accuracy than the DACAPO variants. In fact, the result shows
that EOMU triggers substantially more frequent retrainings,
as marked with the dark grey colored dots. However, such
frequent retrainings do not always help because trainings with
insufficent resource engender incomplete models, which ends
up lowering the final accuracy. Overall, the results suggest
that DACAPO-Spatiotemporal outperforms all the alternative
baselines by leveraging significantly boosted performance of
hardware-accelerated computing platform as well as judi-
ciously allocating resources in the spatiotemporal dimension.

D. Effectiveness of Temporal Resource Allocations

Figure [T1] shows the results of proposed temporal resource
allocations, which are collected during 3 minutes on S1 using
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Fig. 12: Accuracy comparison of DACAPO, EOMU, and Ekya,
using extreme data drift scenarios. We use (ResNetl8 &
WideResNet50) model pair for this experiment.

the evaluated three model pairs. For each pair, we present
the time breakdown of retraining and labeling phases for
DACAPO-Spatial (DC-S) and DACAPO-Spatiotemporal (DC-
ST). Additionally, we report the overall breakdown of retrain-
ing and labeling on the left and the accuracy improvement
results on the right. We observe that when data drifts occur,
DACAPO-Spatiotemporal swiftly detects them and allocates
12.7% higher time slots for labeling, achieving 5.9% higher
accuracy improvement compared to the spatial-only baseline.
These results demonstrate the effectiveness of our strategy
that allocates more resources to labeling at the occurrence of
data drifts. Note that we achieve the improved accuracy even
with “less” retraining time since we cut the assigned time for
retraining, exhibiting the effectiveness of rebalancing.

E. Sensitivity Study for Extreme Data Drift Scenarios

Figure [I2] compares the accuracy results of three continuous
learning systems, when we employ two extreme data drifts
scenarios (ES1 and ES2) and a model pair (ResNetl8 &
WideResNet50). In addition to the two extreme scenarios, we
evaluate four more extreme scenarios and observe the similar
trends, while we only show two cases due to the space limit.
The figure reports the averaged accuracies (left) along with the
accuracy change over time (right). Compared to the regular



scenario results, Ekya experiences an accuracy degradation of
12.9%. Conversely, EOMU exhibits a higher tolerance than
Ekya and offers 7.8% higher accuracy. This improvement is
attributed to EOMU’s capability to monitor accuracy changes
across short intervals and trigger adaptations by retraining
models more frequently than Ekya, as illustrated by dense
markers on the line graphs. However, DACAPO, by scheduling
spatiotemporal resources for retraining and labeling, achieves
the accuracy of 77.2%, which is 4.4% and 13.0% higher than
EOMU and Ekya, respectively.

VIII. RELATED WORK

Continuous learning. Continuous learning addresses the criti-
cal issue of deployed models becoming outdated over time due
to data drift. In the field of machine learning, significant efforts
have been directed toward retraining pretrained models with
new data without forgetting prior knowledge. The replay-based
approach [2]], [6], [76]], [81]], [96] is one such method, integrat-
ing valuable historical datasets with new samples for model
updates. Alternatively, regularization-based updates [43]], [47],
[51], [70], [[78], [90] augment additional regularization terms
during further training to penalize updates on weights critical
for previous tasks. However, implementing these solutions
often presents practical challenges due to unaddressed training
overheads [27], [72]. Distinctively, DACAPO adopts a strategy
commonly employed in data streaming scenarios, as exempli-
fied by the video analytics domain.

Live video analytics. Edge devices, positioned near data
sources, offer significant benefits, such as bandwidth conser-
vation, reduced latency, and improved privacy by eliminating
the need for data transmission to the cloud. However, due to
their limited computational capacity, most contemporary edge
video analytics systems rely heavily on cloud infrastructure.
Prior works [12], [17], [31I, [65[, [88[, [89], [99] aim to
use edge devices for preprocessing tasks, such as filtering
irrelevant frames or cropping the regions of interest. Several
studies [3], [20], [40], [41], [44], 1541, [58[I, [95] propose
partitioning DNN computations between edge devices and
the cloud. Other works [13]], [21], [22], [30]], [100] pro-
pose enhancing efficiency by caching and reusing previous
inference results. Despite these attempts, the involvement of
cloud computing constrains the full potential benefits of edge
computing, explaining the increasing development of edge-
targeted accelerators in the industry [[1], [28]], [32]], [69], [83],
[86]. Furthermore, while there are prior works that propose
edge-targeted training solutions [11f], [[14], [45], [53], [62],
[64]], [94], [102]], they do not take into account the the tradeoff
between resource utilization and final accuracy of training and
labeling computations. DACAPO addresses these issues by a
tailored hardware accelerator design that enables autonomous
systems to perform independent retraining, thus facilitating a
novel continuous learning video analytics system.

Low-precision arithmetic for DNN acceleration. Replacing
resource-intensive floating point operations with low-precision
counterparts is a crucial optimization strategy for DNNs.
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Notably, floating point representations with reduced bit width,
such as FP16 [33]], [63]], FP8 [84], [91], BF16 [29], and
TF32 [68], introduce certain improvements. However, the
inherent computational complexity of floating point often
limits their effectiveness. Conversely, fixed-point quantization
techniques [[15], [39], [57]I, [75], [103], [[104] present compu-
tational advantages but often lead to substantial degradation
in model accuracy. Block Floating Point (BFP) serves as an
effective compromise between these extremes. Courbariaux
et al. [16] and Flexpoint [50] introduce approaches to adjust
shared exponent values either at fixed intervals or throughout
the training process. HybridBFP [23]] calculates a shared
exponent value for each dot-product operation, enhancing
compressibility and accuracy. MSFP [18]] underscores the
significant role of group sizes and validates their approach
on production-level models. FAST [73|] utilizes stochastic
rounding and a bit-serial hardware architecture to support
dynamic bit width adjustment during training. MX [|19] intro-
duces additional micro-exponent bits to the shared exponent,
showcasing enhanced performance across various domains.
DACAPO employs the microexponent concept from MX, ef-
fectively fulfilling the need for dynamic precision inference in
our novel continuous learning system.

IX. CONCLUSION

Most existing continuous learning systems focus solely on
training, neglecting the critical yet compute-heavy tasks of
inference and labeling, and typically assume the availability
of substantial computation resources, which is often impracti-
cal on battery-operated, resource-constrained autonomous sys-
tems. To tackle this challenge, this work proposes a hardware-
algorithm co-designed solution, DACAPO, which enables con-
current executions of retraining, labeling, and inference in
a resource-efficient manner. DACAPO achieves this goal by
jointly leveraging a spatially-partitionable, precision-flexible
accelerator and a spatiotemporal resource allocation algorithm.
Our empirical analyses across six real-world scenarios with
varying data drifts demonstrate that DACAPO obtains accuracy
improvements of 6.5% and 5.5% over the state-of-the-art
systems, Ekya and EOMU, respectively, while consuming
254 less energy. These results confirm that DACAPO is an
effective and vital initial step to realize continuous learning
on autonomous systems.
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