ARTIFACT
EVALUATED
yusenix

ARTIFACT
EVALUATED

susenix
€0,

ARTIFACT
EVALUATED
susenix

AVAILABLE REPRODUCED

CoVA: Exploiting Compressed-Domain Analysis to Accelerate Video Analytics

Jinwoo Hwang Minsu Kim Daeun Kim Seungho Nam Yoonsung Kim
KAIST KAIST KAIST KAIST KAIST
Dohee Kim Hardik Sharma Jongse Park
KAIST Google KAIST

Abstract Video Storage

Modern retrospective analytics systems leverage cascade
architecture to mitigate bottleneck for computing deep neural
networks (DNNs). However, the existing cascades suffer from
two limitations: (1) decoding bottleneck is either neglected
or circumvented, paying significant compute and storage cost
for pre-processing; and (2) the systems are specialized for
temporal queries and lack spatial query support. This paper
presents CoVA, a novel cascade architecture that splits the
cascade computation between compressed domain and pixel
domain to address the decoding bottleneck, supporting both
temporal and spatial queries. CoVA cascades analysis into
three major stages where the first two stages are performed in
compressed domain, while the last one in pixel domain. First,
CoVA detects occurrences of moving objects (called blobs)
over a set of compressed frames (called tracks). Then, using
the track results, CoVA prudently selects a minimal set of
frames to obtain the label information and only decode them
to compute the full DNNSs, alleviating the decoding bottleneck.
Lastly, CoVA associates tracks with labels to produce the final
analysis results on which users can process both temporal
and spatial queries. Our experiments demonstrate that CoVA
offers 4.8 x throughput improvement over modern cascade
systems, while imposing modest accuracy loss.

1 Introduction

Every day, a massive corpus of video data is produced, which
is only growing (9.4 exabytes per day, as of 2021 [1]). Extract-
ing insights and actionable semantics from the captured video
can enable a variety of applications in healthcare, smart cities,
security, customer behavior analysis, etc. Prior works [2—7]
have built retrospective analytics systems that allow analysts
to interactively query over a large corpus of accumulated
video data stored in disk.

Modern retrospective analytics heavily rely on deep neural
networks (DNNs). Although DNNs are effective, they come

Existing Cascade Architecture

@ Decoded
Video

@ Transcoded

Multi-resol. DNN Results

Y
J!#
|
eos
il
|

III\o

Video Storage

2
5+ -2

DNN | Results

Compressed Domain Analysis Pixel Domain Analysis

(b)

Figure 1: (a) Existing state-of-the-art cascade systems [2, 3],
excluding video decoding from the end-to-end setting with
two costly assumptions; (b) the proposed cascade architecture
that addresses the decoding bottleneck and supports spatial
queries, exploiting the compressed domain analysis.

at the cost of significant compute complexity, even for an
image. Evidently, passing all the frames of a video through
DNN inferencing is computationally prohibitive. To address
this challenge, recent works [2—4, 6—13] have focused on cas-
cade architectures. They stage processing as (relatively) in-
expensive predicates to filter the incoming frames of video
by trading analysis accuracy for higher throughput. As such,
only a handful of frames arrive at the last stage that performs
the full DNN inferencing.

While effectively resolving the DNN throughput bottle-
neck, the existing cascade systems have two limitations.
First, as shown in Figure 1(a), these systems either ignore or
sidestep a new bottleneck stage, video decoding, by making
one of the two costly assumptions: (1) input video is decoded
a priori and the raw frames are stored in storage [2, 3,5, 7],
or (2) input video is pre-transcoded and stored in multiple
lower resolutions at ingest time to facilitate the query time
decoding [4, 6]. However, in practice, decoding (or transcod-
ing) the entire video corpus and storing the uncompressed (or

duplicate) data in disk is often infeasible due to the significant
compute and storage cost.

Second, to achieve otherwise-unachievable throughput, the
existing cascade systems often exclusively support temporal
queries. More specifically, many cascade systems [2,3,5,11]
only support binary predicate query, which is to get times-
tamps of frames that contain the queried object. However, re-
cent studies in video analytics [7, 15] propose spatial queries
(e.g., car in upper right region) and demonstrate their useful-
ness, which cannot be supported by the current cascades.

To tackle the two limitations, this paper sets out to devise
CoVA!, an alternate cascade architecture. As illustrated in
Figure 1(b), the key contribution of CoVA is to split cascade
computation between compressed domain and uncompressed
pixel domain, which collaboratively alleviate the decoding
bottleneck at query time without requiring any pre-processing
and support both temporal and spatial queries. To design this
cascade architecture, we leverage the following two insights:

(1) A small set of encoding metadata, commonly used by
modern video codecs, provides noisy, yet rich, informa-
tion to accurately locate potential objects and track them
across frames in compressed video, while decoded pixel
data is only necessary to classify objects.

(2) Video analytics queries can be fulfilled by answering
the following three questions: (1) where and when are
interesting objects present in the video (i.e., spatiotem-
poral information); (2) what are the object classes (i.e.,
label information); and (3) what specific information do
queries ask about these objects?

With these insights, CoVA divides video analytics over
compressed footage into three major stages. The first stage
(Track Detection) detects occurrences of moving objects
(called blobs) over a collection of consecutive compressed
frames (called tracks). To realize this objective, we devise a
novel compressed-domain blob tracking technique, refitting a
neural network based segmentation algorithm and a multiple
object tracking algorithm, both of which are originally de-
signed for pixel domain. Our second stage (Frame Selection)
avoids decoding the whole track and selects a minimal set of
frames that are representative and yet minimize the decoding
load. CoVA passes only this subset through the full DNN ob-
ject detection. The third stage (Label Propagation) takes the
labels and the coordinates of the detected objects in the subset
and uses spatiotemporal information from the first stage to
propagate labels across all the frames of the track. Altogether,
these approaches offer a novel cascade architecture that per-
forms its first and second stages in the compressed domain,
while the third stage is in the pixel domain.

Finally, the three stages produce a collection of analysis
results for each frame, which include a list of present objects,

ICoVA: Compressed Video Analytics.

their pixel coordinates, their labels (e.g., car), and all other
properties associated with the objects (e.g., color). Note that
the results are query-agnostic and not specific to a certain
query. Therefore, CoVA runs the three stages only for the
initial query and stores the analysis results along with the
video in database. When other queries are requested over the
same video in a future, CoVA simply retrieves the results and
process the queries without reprocessing the video.

We prototype a CoVA system” on NVIDIA’s streaming
analytics framework, DeepStream [16]. We evaluate the ef-
fectiveness of CoVA using five video streams and four queries.
Compared to existing cascade systems for query time ret-
rospective analytics, CoVA offers 4.8 x throughput improve-
ment, while compromising only modest accuracy loss. We
also show that CoVA is capable of serving spatial queries
without having significant accuracy loss, compared to the full
DNN analytics baseline.

Contributions. Our key contributions are as follows:

e We show that encoding metadata is sufficiently rich to
identify objects of interest along with their spatiotempo-
ral information for retrospective video analytics.

To extract the spatiotemporal information, we devise
a novel compressed-domain blob tracking technique,
refitting the pixel-domain video segmentation and object
tracking algorithms.

e We present the design of CoVA, a mixed-domain retro-
spective analytics system that leverages the track infor-
mation to alleviate the decoding bottleneck, and support
both temporal and spatial queries.

e Our experiment shows that CoVA offers significant
throughput improvement over conventional cascade sys-
tems, while compromising modest accuracy loss.

2 Background and Motivation

CoVA aims to tackle limitations of existing retrospective ana-
lytics systems. Below, we first provide background on state-
of-the-art retrospective analytics and discuss their limitations.
We also discuss common compression mechanisms of modern
video codecs, which drive the design of proposed techniques.

2.1 Retrospective Analytics

Modern retrospective analytics systems [2—8, 10-14] share
two common properties: (1) heavy reliance on DNNSs, and (2)
cascade architecture to resolve the DNN compute bottleneck.

2Qur prototype is available at https:/github.com/casys-kaist/CoVA.

73.7K

E 5K

L 4k

5 3K

[oR

£ ok

2

3 1K _ _

= N e 3 3 &
N oa‘*‘c’%é o 0 0
0 ex eX X

o@?’(’a G,LQQ\ ano'o‘z\eqpﬂh 35066 S

Figure 2: Throughput comparison among various system en-
vironments of cascade video analytics.

While they have these common properties, there are two differ-
ent dimensions that categorize the instances of retrospective
analytics systems.

Time of analysis — query time vs. ingest time. Retrospec-
tive analytics systems are categorized into two groups, de-
pending on whether the analysis occurs at query time [2,3,11]
or ingest time [4,6,8,13]. While ingest time analysis leverages
offline pre-processing to facilitate and expedite the query time
analysis, it requires to scan the entire video data corpus and
consume compute resources on it, even though a significant
portion of the data is not queried. This approach is not only
cost-inefficient but also environmentally suboptimal since
it would consume a massive amount of energy for mostly
unnecessary computations. In contrast, query time analysis
performs the full analysis at query time without having any
pre-processing. Therefore, it does not touch raw video data
unless it is queried, which allows analysts to prevent the waste
of resources. To this end, this work focuses on the query time
analysis and aims to address its limitations.

Supported query — temporal vs. both temporal and spa-
tial. Most, if not all, of query time cascade systems [2,3, 11]
limit the types of supported queries to be only the temporal
ones and specialize the cascade stages for a specific temporal
query to achieve high throughput. However, recent work [7]
points out that spatial information can enable richer capabili-
ties for video analytics. CoVA is a novel cascade architecture
that leverages compressed-domain analysis to address both
spatial and temporal queries.

2.2 Video Decoding: the New Bottleneck

Decoding for end-to-end cascade. With the volume of video
data growing at an explosive rate, the use of compression is im-
perative to keep storage costs in check. Video codecs such as
H.264 strike a balance between quality and storage size, being
used as the de facto way of storing large corpus of video data.
As such, the first step in an end-to-end system for process-
ing video queries is to decode the video data before further
processing. However, even with hardware-acceleration for

standard codecs baked-in to modern CPUs and GPUs, video
decoding can be up to orders-of-magnitude slower than the
capabilities of cascade systems to process raw video frames.

Bottleneck analysis. To quantify this bottleneck, we exam-
ine the performance impact of video decoding for an existing
state-of-the-art cascade system, Tahoma [3], using NVIDIA
RTX 3090 GPU, and present the results in Figure 2. The de-
tailed methodology is provided in Section 8.1. The cascade
system is effective in addressing the DNN-execution bottle-
neck and offers up to 327 x improvement in performance
compared to a native DNN-only solution. However, even with
decoding accelerator hardware NVDEC [17], the decoding
throughput is significantly lower than the throughput of cas-
cade system, which curtails most performance gains.

Further, as video resolution increases, the decoding
throughput almost linearly decreases, exacerbating the decod-
ing bottleneck. Considering the trend that even IoT devices
such as surveillance cameras produce HD (1080p) or higher
resolution video, we believe that this decoding bottleneck
will become increasingly severe and significantly hinder the
usefulness of video analytics in interactive applications. Mo-
tivated by these insights, the objective of CoVA cascade is to
address the decoding bottleneck in query time retrospective
analytics.

2.3 Block-based Video Coding

To alleviate the decoding bottleneck, CoVA leverages the
unique characteristics of block-based compression, used in
many modern video codecs. Below, we provide background
on block-based compression and discuss opportunities that it
opens for compressed-domain analysis.

Video codecs. Many video codecs, such as H.264, HEVC,
VP8, VP9, and AV 1, use block-based compression algorithm.
In this paper, we primarily focus on the H.264 format since it
is one of the most widely used codecs in various applications
as of publication date [18]. However, CoVA is compatible with
other block-based codecs since all of them compress video,
generating the same set of metadata we use for compressed-
domain analysis in CoVA.

Block-based compression. Block-based codecs compress
(or encode) video frames by splitting each frame into a two-
dimensional array of fixed sized blocks, called macroblocks
(e.g., 16x16 pixels). There are three macroblock types — 1,
P, and B — depending on the way how the macroblocks are
compressed. An [-macroblock is independently compressed,
while P- and B-macroblocks are compressed referring to one
and two other macroblocks, respectively. To maximize com-
pression ratio, the codecs select dependent macroblocks for P
and B-macroblocks with the highest similarity and store the
spatial offsets as metadata called motion vectors. Depending
on the composition of macroblocks, frames are again cate-

Video Compressed

Track
Results

Blob
Tracking

Storage Frames
Partial

Macroblock
@ -

Decoding [8

Motion
Vectors

Frame
Selection

Label
Propagation

Analysis
Results

Selected
Compressed
Frames

Decoded
Frames

DNN-based
Object
Detection

[J uncompressed frames
] unselected frames
O dependent frames

Label
Results

O anchor frames

Compressed Domain Analysis

Pixel Domain Analysis

Figure 3: Overview of CoVA.

gorized into three types, I, P, and B. An I-frame, also known
as a keyframe, is only composed of I-macroblocks, while a
P-frame contains I/P-macroblocks and a B-frame has all of
the I/P/B-macroblocks.

To maximize the compression rate, codecs can partition
macroblocks (e.g., 16x16) into smaller sub-macroblocks
(e.g., 4x4). This optimization allows codecs to achieve
a higher compression rate but at the expense of stor-
ing larger metadata. Modern codecs employ multiple
macroblock partitioning modes. For instance, H.264 uses six
modes from no partitioning (i.e., 1 macroblock of size
(16x16)) to 16-way partitioning (i.e., 16 sub-macroblocks of
size (4x4)).

CoVA leverages the insight that the encoding metadata — (1)
macroblock types, (2) motion vectors, and (3) macroblock
partitioning modes — in the compressed video is sufficiently
rich to detect potential objects and track them across frames.

Compression rate optimization. Due to the higher com-
pressibility, codecs tend to prefer P/B-macroblocks over I-
macroblock. However, the preference for P/B macroblocks
ends up creating long dependency chains among the mac-
roblocks, which cause compression errors to propagate across
the chains and hinder random access to frames in the video.
To resolve the problems, the codecs insert I-frames at regular
intervals, typically every 250 frames, to create independent
sets of consecutive video frames, called Groups of Pictures
(GoP). Within a GoP, the number of dependent frames that
need to be decoded grows linearly, with zero for the first
I-frame and maximum for the last frame.

CoVA exploits the inter-frame dependencies and object track
information extracted from compressed-domain analysis to
prudently select the frames with the least number of depen-
dencies in each GoP that enable to identify all the objects
present and minimize decoding effort.

3 Overview of CoVA

CoVA divides video analytics over compressed footage into
three major stages, as illustrated in Figure 3.

ﬂ First Stage: Track Detection. First, CoVA detects occur-
rences of moving objects over a collection of consecutive
compressed frames, which we call tracks. The track detection
stage further breaks down into two steps: (1) blob detection:
CoVA spatially detects whether and where moving objects
(called blobs) are present in each compressed frame; and (2)
blob tracking: CoVA temporally associates the blobs across
frames to identify unique blob tracks. For the blob detection,
we devise a novel compressed-domain blob detection model,
refitting a neural network architecture originally designed for
pixel-domain video segmentation. The neural network only
takes as input three encoding metadata commonly used by
modern codecs, recognizes movements as masks, and spatially
associates the masks clustered in a region as blobs. While the
neural network architecture is fixed, CoVA trains the model
individually for each video to learn the data-specific patterns
of blobs and specialize for the target video. Finally, the found
blobs are fed into the blob tracking step that employs an ob-
ject tracking algorithm, SORT [19], which was also originally
developed for pixel domain. Note that the blob track results
still lack the object class labels.

@ Second Stage: Frame Selection. To attain the object
labels for the detected blobs, CoVA needs to perform DNN-
based object detection for the frames where tracks appear,
which ordinarily require decoding all the frames. However,
as frames on a track most likely contain the same object, it
is enough to perform the object detection on a subset of the
frames in the track, which we call anchor frames. Thus, CoVA
only decodes frames required to decode the anchor frames,
which improves the effective decoding throughput. The chal-
lenge is how to prudently select the anchor frames so as to
minimize the decoding cost and at the same time acquire the
accurate label information. We develop a frame selection al-
gorithm that leverages a common property of video codecs
where compressed frames are encoded in dependency chains.
Thus, anchor frames are the ones that are located on the max-

imal number of tracks and at the same time have the short
dependency chain with respect to the decoding algorithm.
Note that while the anchor frames are the only ones that are
inferred upon for object detection, all the frames in the track
need to be labeled to handle various video analytics queries.

© Third Stage: Label Propagation. In the third stage,
CoVA takes the approximate positions of potential objects
(or blobs) from the first stage and labels for the anchor frames
from the second stage to temporally propagate the labels
across all the frames of the tracks. To merge the spatial and
temporal results, CoVA first spatially correlates blobs with
objects on anchor frames using the intersection ratios of their
bounding boxes. Then, CoVA uses the tracking information
to identify the same objects across the frames and propagates
the labels, while populating bounding boxes around the corre-
sponding blobs in the temporally consecutive frames.

Finally, when a video passes through the three stages, CoVA
produces a collection of analysis results for each frame, the
examples of which are a list of present objects, their pixel
coordinates, their labels (e.g., car), and all other properties
associated with the objects (e.g., color). Note that the results
are created only once when CoVA receives the initial query
over a video and they are permanently associated with the
video in the database. After then, analysts can use the same
results to process various future queries without reprocessing
the video.

4 Compressed Domain Blob Tracking

In this section, we describe the track detection mechanism
that is the first stage of CoVA’s cascade architecture. Figure 4
depicts the overall workflow.

4.1 Learning to Detect Blobs

Limitations of existing compressed domain video process-
ing techniques. Detecting objects or blobs from compressed
video is a traditional research problem in the computer vision
community [20-25]. However, the following two limitations
prevent the simple adoption of these techniques. First, the
techniques often require human-crafted parameters that need
to be tuned for each input video, which makes automated
analytics impossible. Secondly, the techniques are not suffi-
ciently robust to be applied to arbitrary video data, producing
inadequately accurate tracking results for video analytics. To
overcome such limitations, recent works [26,27] explored to
use neural networks for vision tasks over compressed video.
Unfortunately, we could not employ the neural networks for
CoVA since they not only still require pixel-domain data for a
subset of frames, but also offer insufficient throughput that is
significantly lower than the decoder.

Macroblock

Type &Mode
Compressed b Blob
Frame Masks

g BlobNet

Blob
Tracking

W

.iﬁ}

Motion Vectors

Figure 4: Track detection.

K3

:
' . .
Macroblock + Domain o N '
(mB) MBuy = By .
— MB Type/ M8, 4 VB o :
: - 'g MB :
. W 1
[MB Mode’ o] Concat By Input
. 1
MB,
Motion 5 w ! \
Compressed (M\Cect“?vr) H

Frame

:
.
:
'
_______________________________ :
' Labeled
Mixture of . Dataset
. ”
Gaussians y ! Output
'
:
:
:
.

1 Pixel Decoded
(b) ! Domain Frame

Figure 5: (a) Feature engineering that transforms three com-
pression metadata into a tensor of input features; (b) labeled
data collection using the Mixture of Gaussians (MoG) model.

Leveraging the similarity between video segmentation
and blob detection. To address these limitations, we exploit
an observation that blob detection using compression meta-
data is akin to the problem of the semantic image segmenta-
tion using pixel data. Blob detection task aims to find potential
objects and their approximate position within video frames.
Image (or video) segmentation task, on the other hand, aims
to semantically split an image (or frames of a video) and clas-
sify each segment into one of the predetermined labels. When
there are only two classes — blob and non-blob — the image
segmentation task can be reduced to the approximate blob
detection task. This observation allows us to tap into the vast
range of techniques, including Deep Neural Network (DNN)
based image and video segmentation, that can be geared to-
wards compressed domain blob detection.

4.2 BlobNet

To this end, we devise a lightweight DNN-based blob detec-
tion model, called BlobNet, building upon the state-of-the-art
Temp-UNet [28] model for video segmentation. Unlike the
Temp-UNet model, which operates on pixel frames, BlobNet
operates on compression metadata.

Feature engineering. Figure 5(a) depicts the feature engi-
neering, which converts the three metadata into a tensor of
input features. BlobNet takes the three types of metadata as
input — macroblock types, macroblock partitioning modes,
and motion vectors. To obtain the metadata, CoVA performs

only a few early stages of the decoding process required to
extract metadata, called partial decoding. CoVA encodes the
first two metadata, macroblock types and partitioning modes,
by mapping each of their combinations into an one-hot vector
(e.g., total 12 combinations for H.264). These one-hot vectors
are fed into an embedding layer, which converts each one-hot
vector into a scalar weight value. This weight value is concate-
nated to the motion vector (MV,,, MV}, for each macroblock,
which finally results in a 3D tensor (M By x MBy % 3). CoVA
temporally stacks these tensors from consecutive frames and
constructs a 4D tensor, which is the input for BlobNet.

BlobNet architecture. Similar to the architecture of Temp-
UNet’, BlobNet has three major components: (1) encoder
that extracts the presence and approximate location of blobs
from noisy metadata; (2) decoder that reconstructs the shapes
of blobs from the blob presences; (3) skip connections that
offer spatial information to the decoder for assisting the shape
reconstruction process. While this overall composition is the
same as that of Temp-UNet architecture, we maximally re-
duce the depth of encoder and decoder modules such that the
resulting model still offers high accuracy while maximizing
the inference throughput.

Video-specialized model training. Pixel video segmentation
models typically train once during a training phase, followed
by inference on unseen video data. However, CoVA trains
BlobNet at query time for every video data to specialize the
model for the specific data. This design choice is derived from
our empirical observation that without such model specializa-
tion, the model cannot capture the variations of data-specific
encoding parameters and fails to reach sufficient accuracy.
Note that once training is completed for a video data, no fur-
ther training is required for additional video if the video is
recorded from the same angle of view with the trained one.
We empirically observe that ~ 3% of the video is sufficient to
train the model for the evaluated video (see Table 2). The train-
ing process, including data collection and training, takes only
a few minutes, which can be amortized for multiple queries
on the same video data. Such training cost amortization is
inspired by existing query-time cascade systems [2, 3, 6, 8]
that train specialized neural networks for each video.

Labeled data collection for supervised learning. As CoVA
aims for large-scale video analytics, manually labeling the
video data is infeasible. As such, CoVA needs a method to
automatically label the video data. Similar to prior works [2,
3,8, 29], using pixel domain object detection is a possible
option. However, object detection models are not only compu-
tationally expensive but also produces labels for non-moving
objects, which should not be used to train BlobNet, designed
to detect only moving objects. Instead, we exploit the con-
ventional Mixture of Gaussians (MoG) based background

3We omit the detailed architecture and refer to the paper [28].

4] GoP. GoP GoP
- GE) 249 eeeiannn! ML] LSRR OF 1
&
52 ©
U =
=
EZ w -
2 § 0 : 3 @ Frames in Time
& @ < A ' > ! |© Anchor Frames
(b) | «——» | |0 Dependent Frames
(© - ‘ Ly
t t+1 1+2

Figure 6: Example scenario of track-aware frame selection.

subtraction technique since it is lightweight and only looks
for the moving objects.

4.3 Tracking Blobs

Blob detection results. The output of BlobNet is merely a
collection of 1’s on the resulting bitmap, which lacks the
notion of objects. CoVA uses connected-component labeling
algorithm to uniquely identify the interesting regions in com-
pressed frames as potential objects, called blobs. Once the
blob identification process is completed, CoVA obtains the
spatial information of blobs on each frame. However, the
blobs existing across consecutive frames are not yet tempo-
rally associated with each other, which necessitates the next
stage of CoVA, blob tracking.

SORT-based blob tracking. The end objective of blob track-
ing in compressed domain is to minimize the number of
frames to be decoded to mitigate the decoding bottleneck.
Hence, the tracking algorithm must (1) offer high through-
put that significantly outperforms the decoder throughput, (2)
while accurately tracking the inter-frame blobs to minimize
the accuracy loss at the label propagation stage. We exten-
sively explore existing object tracking techniques in pixel do-
main [19,30-36], and choose the SORT object tracking algo-
rithm [19], which satisfies the above two requirements. SORT
offers the near-best tracking accuracy among the state-of-the-
art tracking techniques and keeps the computation lightweight
by exploiting conventional optimization algorithms, Kalman
filter and Hungarian assignment.

5 Track-aware Frame Selection

Leveraging the track information, CoVA prudently select a
small subset of frames to decode, called anchor frames, so
as to maximize the decoding throughput. The key idea be-
hind the anchor frame selection algorithm is to pick the ones
that require to decode the least number of frames and thus
maximize the effective decoding throughput.

Dependency between compressed frames. As described in
Section 2.3, block-based compression uses a combination of
(1) independent frames that are self-contained (i.e., I-frame),
and (2) dependent frames (i.e., P/B-frames) that depend on

Input :efs: compressed frames in a GoP;
tracks: blob tracks that maintain across GoPs
Output : dfs: compressed frames chosen to be decoded
afs: anchor frames

1 cur_tracks = tracks that terminate in GoP;

2 with no anchor frames assigned

3 dfs=afs=0

4 if cur_tracks # 0 then

5 start_timestamps = sorted(cur_tracks.starts())

6 end_timestamps = sorted(cur_tracks.ends())

7 sidx = eidx =0

8 for ef in efs do

9 while start_timestamps[sidx] == ef.timestamp do
10 candidate_af = ef

11 sidx = sidx + 1

12 end

13 while end_timestamps[eidx] == ef.timestamp do
14 afs.add(candidate_af)

15 dfs.add_dependants(candidate_af, efs)

16 eidx = eidx + 1

17 end

18 end
19 end

20 dfs.output()
21 afs.output()

Algorithm 1: Track-aware frame selection algorithm.

either preceding frames, subsequent frames, or both. Due
to the presence of P-frame and B-frame within a GoP, the
number of dependent frames that need to be decoded to fully
decode a frame follows a saw-tooth structure, as depicted in
Figure 6. The number of dependent frames is zero for I-frame
at a GoP boundary and grows linearly until it resets to zero at
the end of GoP".

Selecting anchor frames for decoding. To minimize the de-
coding load, we leverage two insights: (1) CoVA can find the
consecutive frames where an object keeps appearing in the
video, and (2) the computations load to decode a frame is pro-
portional to its number of dependent frames. Within each GoP,
CoVA identifies a set of anchor frames, which can identify all
objects present in the GoP and perform the least computation
for decoding, by minimizing the number of dependent frames.
The selected anchor frames are the only ones that are passed
to the DNN object detector to produce the label information.

Example. Figure 6 presents an example where CoVA identi-
fies three unique objects, (a), (b), and (c), as well as the range
of frames where each object stays in the video. In this exam-
ple, the best choice of anchor frame would be Frame @ since
(1) all the objects are present in Frame @, and (2) Frame
@ has the least number of dependent frames among frames
where all the objects are present.

“4For brevity, we simplify Figure 6 by only visualizing dependency chains
for P-frames since the number of dependent frames for B-frames is similar
to that of the nearby P-frames.

Time

Framet IZI
y “car” loU > threshold
DNN

Framet+)
(Anchor Frame)|| E T Object]] I@é—d*

ffffff Detector

Framev2 |t 4@
0

p— [Sep——

,,,,,,,,,,,,

Label = “unknown” Label = “car”

Figure 7: Label propagation.

Algorithm. Algorithm 1 describes the frame selection algo-
rithm in detail. Line 1: When a GoP arrives at the frame
filtering, to select the anchor frames, CoVA only considers
tracks that (1) terminate in that particular GoP and (2) do not
have any anchor frames yet (e.g., object (a)/(b) at time ¢). Line
9: Then, as CoVA visits frames in order, it first checks if a
track starts appearing in the visiting frame. Line 10: If it does,
the visiting frame is marked as “candidate” anchor frame
(e.g., Frame @ at 7). Later on, if a new track starts appearing
in a successive frame, the frame becomes the new candidate
(e.g., Frame @ at 1+ 1). Line 14-15: When a track ends, CoVA
adds the current candidate frame into the anchor frame list
(e.g., Frame @) and inserts all the dependent frames into the
dependent frame list (e.g., all frames between Frame @ and
Frame @). The intuition behind this algorithm is that, if a
track started but did not terminate, any frame in between can
be an anchor frame. However, when a track ends, an anchor
frame for the track must be selected, because otherwise, we
may not have any anchor frame for the terminating track.

6 Label Propagation

In the last stage, CoVA takes the blob tracks and labels for the
anchor frames to temporally propagate the labels across all the
frames on the tracks. Figure 7 illustrates the example work-
flow of label propagation. When the selected anchor frames
and their dependent frames are decoded, CoVA takes only an-
chor frames to perform the DNN object detection and obtain
the labels (e.g., “car”) as well as their spatial information. To
associate the labels with blobs, CoVA first spatially correlates
blobs with the detected objects using the intersection over
union (IoU) between their bounding boxes (e.g., bounding
boxes of blobs and detected objects are denoted using green
and blue boxes, respectively). When the IoU is larger than a
threshold, CoVA associates the detected objects with blobs
and propagates the labels to all frames in the tracks.

Multiple-objects overlapping problem. One challenge with
the label propagation mechanism is that when BlobNet fails
to separately identify multiple objects clustered together and
creates a large single blob, CoVA cannot correctly propagate
the multiple labels. To overcome the challenge, we prepend

an additional step to the label propagation. When a multitude
of detected objects are spatially overlapped with a single blob,
CoVA splits the blob into multiple blobs, proportionally pro-
jecting the locations of objects in the anchor frame to the blob.
The proportional projection is also applied to other frames in
the same track, populating multiple tracks from a single track.
This way, CoVA is able to propagate the multiple labels to the
separated tracks, instead of giving a single erroneous label to
the clustered objects.

Static object handling mechanism. As CoVA relies on the
compressed domain analysis to detect blobs, it is impossi-
ble to detect static objects from the compression metadata.
Therefore, our BlobNet focuses on detecting moving objects,
intentionally excluding the static object information from
the training data through the use of MoG. However, CoVA
still performs full-fledged object detections on anchor frames.
Therefore, the static objects can be detected at least on the an-
chor frames. As the static objects stay still at the same location
across subsequent anchor frames, CoVA is able to associate
them as the same object and produce the corresponding track.

7 Implementation

System architecture and constituent software modules.
We prototype a CoVA system using DeepStream, which is
built upon GStreamer, for constructing the skeleton pipeline
of video analytics. As described in Section 4, the initial stage
of CoVA is the partial decoding, which extracts the metadata.
Hardware-accelerated decoder (e.g., NVDEC) does not sup-
port partial decoding and only generates the fully decoded
frames. Thus, we modify an open-source video codec, libav-
codec, such that it only produces the three types of metadata.
In addition, CoVA performs two neural network inferences,
one for the blob detection and the other for the full DNN infer-
ence (YOLOv4). We use on a TensorRT-based DNN inference
plugin on DeepStream, nvinfer [37].

Parallelization in CoVA. Our prototype system distributes
the computations of pipeline stages over CPU and GPU, while
exploiting their parallelism. Initially, CoVA scans the entire
video and splits it into chunks at the I-frame boundaries to
parallelize the computation on CPU threads. This scanning
takes just a few seconds even for hours of video data, which
imposes negligible overhead. Such parallelization results in
cutting tracks at the chunk boundaries, but its impact on accu-
racy is negligible since there are only a few dozens of chunks.
For a chunk, the first two stages, track detection and frame
selection, should be pipelined in the same thread since these
algorithms rely on the temporal dependencies of frames. For
object detection, anchor frames are independently computed,
which can be fully parallelized. Therefore, CoVA maintains
only a single thread for object detection and anchor frames
from different chunks are batched together for inference.

Table 1: Descriptions of example video analytics queries.

Query Abbr. Description Metric
Bln.ary BP Returp framfas where Accuracy
Predicate querying object appears
Return tl}e average .count Absolute
Count CNT of querying object in
Error
frames
Return frames where
Local uerying object appears
Binary LBP querying objec: appear Accuracy
. in a certain region of
Predicate
frames
Count querying o5 Error

certain region of frames

8 Evaluation

8.1 Methodology

Queries. To demonstrate the effectiveness of CoVA, we eval-
uate four example queries, two queries widely used in prior
work [2, 3, 8], and their spatial variants supported by CoVA.
Table 1 reports the list of evaluated queries with their descrip-
tions and accuracy metrics:

(1) Binary Predicate. Binary predicate (BP) query finds
frames where queried objects appear. Collecting frames
with queried objects is an initial step of advanced anal-
ysis, which makes BP an important query for evalua-
tion despite the simplicity. Many retrospective analyt-
ics systems evaluate their solutions only using the BP
query [2,3].

(2) Count. The count (CNT) query is introduced by a prior
work, Blazelt [8], which is an aggregate query that counts
the number of queried objects appearing in the whole
video. As the aggregated count is largely dependent on
the length of each dataset, the number is normalized by
dividing it by the number of frame counts.

(3) Local Binary Predicate and Local Count. The local
binary predicate (LBP) and local count (LCNT) queries
are spatial variants of BP and CNT queries, respectively;
however, the only difference is that they exclusively look
for objects located in a certain region of interest. For
instance, users can query northbound traffic in highway
monitoring video by annotating the corresponding region
of video as “northbound”. Serving these queries not only
requires the temporal query results, but also needs spatial
information to determine the object locations.

Metrics. Table | also reports metrics used for each query. We
use the same metrics that prior works use to evaluate their

Table 2: Descriptions of video datasets, queried objects, ground truth results, and region of interest used for spatial queries. Note
that we use the Yolov4 DNN model applied frame-by-frame to the original video to get ground truth.

Video Name Num of Length Object in Object Object Local Local Region of
Frames Interest Occupancy Count Occupancy Count Interest
amsterdam [38] 3,580K 33H Car 70.07% 1.40 29.05% 0.44 Lower Right
archie [8] 3,567K 33H Bus 10.48% 0.17 6.63% 0.11 Upper Left
jackson [39] 2,921K 27H Car 31.91% 0.56 18.28% 0.29 Lower Left
shinjuku [40] 1,782K 16H Car 82.29% 2.19 1991% 0.38 Lower Left
taipei [41] 3,564K 33H Car 84.48% 5.03 22.16% 0.64 Lower Right
solutions. For BP and LBP, as in prior works [2, 3], we use ac- Decode-bound Cascade == CoVA |
curacy, which is a traditional metric for binary classification 10K 7.09x
that evaluates how many observations, both positive and neg- & 8K 5.76x
ative, are correctly classified. Similarly, for CNT and LCNT, g 4.47x 4.79x
we use absolute error as used in Blazelt [8]. 5 6K 3.69x 3.75x
Datasets. Table 2 reports the video datasets used for the '§> 4K
evaluation. Taking a similar approach with prior works [2, 2
3,6-9,42], we collect the video datasets from YouTube live = \ \ 491

streams [38—41]. They are recorded from statically installed
cameras, which is a widely used setup in various applications
domains such as traffic monitoring [43—-45], security [46,47],
surveillance [48], and healthcare [49]. Video contents involve
various kinds of scenarios, which include traffic circle, high-
way, harbor, city streets, and park. As the datasets have dif-
ferent resolutions ranged from 720p to 2160p, we transcode
them to 720p and evaluate the throughput and accuracy for
ease of comparison. Note that higher resolutions (e.g., 2160p)
create more severe decoding bottleneck, so using them would
be favorable to CoVA, producing higher throughput gains and
therefore, to be conservative, we choose to use 720p for all
video datasets. The rightmost five columns report the ground
truth results for the four queries and the region of interest that
spatial queries focus on. Getting the ground truth results by
manually labeling the hours of video data is infeasible, so we
apply a full DNN model (YOLOV4) to the entirety of video
in a frame-by-frame manner.

Hardware specifications. Our CoVA prototype is built on a
server with two 16-core Intel Xeon Gold 6226R CPU (2.9
GHz), 192 GB of DRAM, and an NVIDIA RTX 3090 GPU
(24 GB GDDR6 DRAM). We turn off hyperthreading to avoid
interference among threads.

Decoder. For all experiments, we use NVIDIA’s hardware
accelerated decoder, NVDEC, for both baseline and CoVA
systems to make a fair comparison. We choose not to use the
CPU decoder, libavcodec, since it shows lower throughput
than NVDEC even with 32-core parallelization.

Baseline cascade system. As the baseline, we use existing
cascade systems for query time retrospective analytics. As
discussed in Section 2, cascade systems such as Tahoma [3]

0K
amsterdam archle]ackson shlnjuku taipei gmean

Figure 8: End-to-end system throughput of the baseline
decode-bound cascade and CoVA. The throughput of decode-
bound cascade is equivalent to the throughput of NVDEC (i.e.,
1,431 FPS), which is marked with a red line.

are significantly bottlenecked by video decoding. Therefore,
for a conservative comparison with these decode-bound cas-
cade systems, we assume that the cascade systems are only
bottlenecked by the decoder, not by any other stages. With
this assumption, the throughput of cascade systems is equiv-
alent to the decoder throughput. We refer to this baseline as
decode-bound cascade in this paper.

8.2 Performance Implication of CoVA

Throughput improvement. Figure 8 compares the end-to-
end system throughput of the baseline decode-bound cascade
system and CoVA across five video datasets. CoVA achieves
on average 4.8 x throughput improvement, which ranges from
3.7 x for archie to 7.1 x for jackson. The significant speedup
shows that CoVA effectively pushes a large proportion of anal-
ysis to the compressed domain, unclogging the decoding bot-
tleneck that prevents the existing cascades to achieve beyond
the constant NVDEC throughput. The results also suggest that
depending on the datasets, CoVA sees different speedups. The
datasets, jackson and amsterdam, see relatively larger gains,
while archie and taipei datasets show lower benefits. These
gaps can be attributed to the unique content properties of each
evaluated video dataset that deliver varying throughput for the

Table 3: (1) Filtration rate at decoder stage (decode filtration
rate) and (2) filtration rate at DNN inference stage (inference
filtration rate).

Decode Filtration Inference Filtration

Dataset Rate (%) Rate (%)
amsterdam 87.16 99.60
archie 72.94 99.15
jackson 94.81 99.79
shinjuku 77.18 99.26
taipei 74.03 99.81

Partial Decoder Il BlobNet
Il Decoder (NVDEC) Hl DNN-based Object Detector

20K Bottleneck

Effective
Throughput
(FPS)

2 2 2

K
amsterdam archie jackson shinjuku taipei

Figure 9: Effective throughput of CoVA stages. The lowest bar
represents the bottleneck of CoVA pipeline, which is marked
with hatching lines.

CoVA pipeline stages, which eventually engenders a different
bottleneck point. To better understand the throughput implica-
tion of these stages, we delve into the interplay of algorithms
and system in the CoVA pipeline below.

Effectiveness of frame selection. Frame selection is the key
to alleviate the decoding bottleneck since it determines the
computational load for decoder. Table 3 reports the filtration
rates at decoding stage (decode filtration rate) and DNN in-
ference stage (inference filtration rate). The decode filtration
rate is calculated based on the number of decoded frames that
include both anchor frames and their dependent frames, while
the inference filtration rate only considers the anchor frames
that are passed to the DNN object detection stage. Intuitively,
various semantics of datasets cause different filtration rates.
If video contains many objects having lots of motions, blob
tracking would produce numerous tracks, which would re-
quire many anchor and dependent frames to proceed to the
decoder. For crowded video streams such as archie, CoVA sees
lower decode filtration rate of 72.94%, while the uncongested
ones like jackson capture less activity and provide higher de-
code filtration rate of 94.81%. Across all datasets, CoVA filters
out over 73% to deliver over 3.7 x (=100/(100-73)) throughput
boost for decoder. At the same time, the inference filtration
rate closely reaches 100%, which addresses the DNN bottle-
neck since the object detector only sees a handful of frames.

Bottleneck analysis. To understand the throughput variation

Table 4: Accuracy results of the four evaluated queries for
the video datasets. The acronyms for accuracy metric are
specified below.

. BP CNT LBP LCNT

Dataset Object (ACC) (AE) (ACC) (AE)
amsterdam Car 85.79 0.15 81.61 0.09
archie Bus 86.96 0.04 90.06 0.01
jackson Car 86.13 0.10 92.01 0.05
shinjuku Car 90.15 0.30 91.31 0.05
taipei Car 87.74 1.10 83.98 0.37
average - 87.34 N/A 87.69 N/A

* ACC: Accuracy (%), AE: Absolute Error

of CoVA stages across different datasets, we measure the per-
formance of individual stages. Figure 9 reports the effective
throughput of each stage by starting from the first partial de-
coding stage and adding successive stages one by one to the
system. The effective throughput is defined as the product of
the absolute throughput of stage and the accumulated filtra-
tion rates. Note that since we measure the throughput from the
pipelined system, the effective throughput of a stage cannot be
larger than that of the previous stage. The results suggest that
different datasets experience bottleneck at different stages.
The datasets that attain lower decode filtration rate than the
others (i.e., archie, shinjuku, and taipei) are still bottlenecked
at the decoder, while the other two datasets are bounded by
the DNN object detector. We observe that the inference of
BlobNet never becomes a bottleneck and always matches the
throughput of the preceding partial decoding stage.

8.3 Accuracy Implication of CoVA

Table 4 reports the accuracy results of evaluated queries. For
the BP query, CoVA achieves on average 87.3% accuracy. For
the CNT query, CoVA experiences absolute errors from 0.04
(archie) to 1.10 (taipei), respectively. For spatial queries (LBP
and LCNT), we do not observe a noticeable difference in
accuracy with the temporal queries. The lack of difference is
intuitive since CoVA processes the spatial queries by simply
restricting the focus of analysis to a certain region of frames.
Therefore, the results of spatial variants are merely a subset
of temporal query results.

The results show that the approximate nature of compressed
domain analysis introduces accuracy loss. However, we argue
that such modest level of accuracy degradation (10~20%) is
tolerable to retrospective video analytics, which aims to pro-
cess large corpus of video data interactively at query time. The
video analytics also inherently produce approximate results
due to the nature of noisy analog video data and predictive
object detection models. Moreover, our accuracy results are
conservatively calculated by treating the YOLOv4 detection
results as ground truth and marking the CoVA results as error

Table 5: Raw throughput of four different video codecs on the
libavcodec and NVDEC decoders.

Codec Full Decoding (FPS) Partial Decoding
NVDEC libavcodec (FPS)
VP8 1,590 1,802 32,774
H.264 1,431 1,230 16,761
VP9 3,249 1,179 35,349
H.265 3,888 2,026 25,862

if they do not match. However, we empirically observe that
there are many cases where YOLOv4 misses small objects
when the objects are faraway from the shooting point, while
CoVA can correctly detect them by successfully tracking blobs
even for the small objects and propagating the correct labels
to the tracks. In this case, the correct results of CoVA would be
marked as false positives due to the erroneous ground truth.

Discussion. As discussed above, approximation is fundamen-
tally inevitable for video analytics, because even the best
effort results are still imperfect. Thus, our goal in designing
CoVA is to achieve acceptable approximation accuracy loss
for video analytics. According to a study [50], the level of ac-
ceptable approximation accuracy loss is higher when the users
consider contexts such as application purpose and cost. We
believe that CoVA could be a useful tool where analysts can
quickly and cost-efficiently extract high-level insights from a
large corpus of videos. For instance, consider an application
that monitors traffic in a harbor in Amsterdam (see Table 2).
For binary predicate query, it suffers from 15% accuracy loss.
However, CoVA does not miss the cars completely from the
video in most cases since the cars stay in the video for at
least several tens of frames (only 2% of cars are eventually
missed). Hence, if analysts merely wanted to estimate traffic,
CoVA would be able to offer sufficiently precise results. We
also believe that if an application requires more accurate re-
sults, CoVA could serve as an initial scanning tool that quickly
identifies “worth-to-be-further-analyzed” video clips.

8.4 Sensitivity Study

Implication of video codecs. We implement the CoVA sys-
tem based on H.264, one of the most widely used video codecs.
However, to demonstrate applicability of CoVA to other block-
based compression standards, we take three alternatives, VP8,
VP9, and HEVC (i.e., H.265), and develop metadata extrac-
tion in their partial decoding implementations. Table 5 reports
throughput results when using the four different codecs with
720p videos and 32 cores. The throughput of NVDEC for the
four codecs ranges from 1,431 FPS to 3,888 FPS, which is
significantly lower than the effective throughput of existing
cascade systems and thus our problem statement regarding
decoding bottleneck still holds true. In addition, we observe

—¥— Partial Decoding
Full Decoding (libavcodec)

40K BlobNet
(89.5K)

w
o
2

20K+ 116Kk 187K
8.3K

.
o
2

4.4K
2.3K

Throughput (FPS)
(Log Scale)

NVDEC

1.4K
0.8K 1.1K 1.2K 1.2K 1.2K ()

_A
2

4cores 8cores 16cores 24cores 32cores

Figure 10: Throughput of partial and full video decoding
(libavcodec) on CPU, as the number of cores changes from
4 to 32. For comparison, we also report the throughput of
BlobNet and NVDEC, while they have constant throughput
since they run on GPU.

that for all codecs, the full decoding throughput in both soft-
ware and hardware significantly falls short of throughput of
the partial decoding. This throughput gap allows CoVA to
construct a cascade architecture that enables blob tracking
to run at a higher throughput than the vanilla decoder and
effectively lowers the full decode workload.

Implication of CPU parallelism. To further analyze the scal-
ability of our parallelization scheme, Figure 10 compares the
throughput of partial and full decoding as we parallelize them
using the varied number of cores from 4 to 32. We also show
the throughput of BlobNet and NVDEC for comparison. Note
that these results are averaged across the datasets. The results
show that the parallelized partial decoder not only scales sig-
nificantly better than the full decoder when using the same
number of cores (i.e., 1.5% vs. 5.9x), but also largely out-
performs the throughput of NVDEC. Currently, we use all
the available cores (32) for partial decoding to optimize for
throughput. However, one may be able to revise the objective
function such that it also takes into account resource utiliza-
tion and energy efficiency, which we leave as a future work.

9 Related Work

A growing body of literature [2-9, 14, 15,29,51-57] aims to
address the computational challenges in video analytics. CoVA
differentiates itself by addressing video decoding bottleneck,
exploiting compressed-domain analysis. Further, CoVA does
not require pre-processing, transcoding, or profiling to obtain
the benefits.

Cascade architectures for binary predicate queries. No-
Scope [2] and Lu et al. [5] use a series of approximate pixel-
domain filtering stages to build their cascade. Tahoma [3]
and Shen et at. [29] use multiple pipelined neural networks
to build their cascade architecture. Blazelt [8] builds on top

of NoScope to support Aggregate and Limit Queries. All five
works aim to increase the effective throughput of the system
for raw video frames by filtering a majority of the frames us-
ing pixel-domain operators. Alternatively, Thia [51] splits up
the DNN-inference model using exit points for early termina-
tion, similar to the stages of cascade architecture. In contrast,
CoVA splits the cascade computation between compressed
domain and pixel domain to alleviate the decoding bottleneck.

Spatial queries for video analytics. An emerging class of
video analytics systems aim to enable queries based on spatial
relationship between labeled objects. Koudas et al. [7] accel-
erate spatial queries using separate stages for inexpensive
DNN-based classification followed by expensive DNN-based
object detection. TASM [15] dynamically adapts the layout of
tiles, which partition compressed video frames, based on the
spatial location of objects to improve performance. Unlike the
above works, CoVA uses compressed domain blob tracking
to accelerate spatial queries. Unlike TASM, CoVA does not
need to update the compression to gain performance benefits.

Storage-accuracy trade-off for decoding bottleneck. VS-
tore [4] uses a search space of fidelity and encoding/decoding
knobs (frame sampling rate, resolution, etc) to optimize for
query performance and storage cost. SMOL [6] jointly opti-
mizes complexity of the reference DNN for inference and the
resolution of data (360p, 720p, etc), for accuracy-performance
trade-off. VSS [52] proposes optimizations for video storage
to yield higher read rates and compression ratios. CoVA takes
an orthogonal approach of performing approximate blob track-
ing using compression metadata at query time. Nevertheless,
CoVA is complementary to the above approaches.

Ingest time analysis. Focus [9] generates approximate labels
using an inexpensive DNN and Boggart [53] tracks objects
at ingest time to generate additional metadata. At query time,
both Focus and Boggart use the stored metadata to yield im-
proved performance. Scanner [54] identifies sampling frames
offline for pixel domain analysis and skips decoding for all
other frames. In contrast, CoVA does not require additional
metadata and can operate on standard video compression for-
mats. VideoStorm [55] uses offline profiling data for dynamic
load balancing and Chameleon [14] uses inexpensive online
profiling to improve accuracy-resource tradeoff at query time.
These two profiling approaches are orthogonal and comple-
mentary to compressed-domain query processing in CoVA.

Compressed domain object detection. Many prior
works [23, 25,58, 59] have proposed object detection from
compression metadata using classical approaches such as pre-
defined kernels [24] and statistical models [20,60,61]. Further,
the prior works impose restrictions on the compression-time
parameters (e.g., 4 frames per GoP), which limit their
applicability [20,23-25]. Liu et al. [62], Wang et al. [27], and
Wau et al. [26] employ DNNSs to detect moving objects using
both pixel and compressed domain data, training a single

model for all datasets. BlobNet differs from prior works
in the following aspects: (1) BlobNet does not require any
pixel data; (2) BlobNet does not impose restrictions on the
compression parameters; and (3) BlobNet is trained for given
video to compensate the accuracy.

10 Conclusion

Existing cascade systems for video analytics assume to pay
significant compute and storage cost for addressing the de-
coding bottleneck. Further, the systems are specialized for
temporal query to achieve otherwise-unachievable throughput.
To tackle the two limitations, this paper proposes CoVA, which
splits cascade computation between compressed and uncom-
pressed pixel domain. Leveraging the unique characteristics
of video analytics and video compression algorithm, CoVA
effectively unclogs the decoding bottleneck while additionally
supporting spatial queries. Our experiments demonstrate that
CoVA reduces the decoding workload by 83.6% and offers
4.8x system speedup compared to state-of-the-art query-time
retrospective video analytics systems, while compromising
modest accuracy.

11 Acknowledgements

We thank the anonymous reviewers and our shepherd
for their comments and feedback. This work was sup-
ported by National Research Foundation of Korea (NRF-
2020R1A2C1103088) and Information Technology Research
Center (ITRC) support program (II'TP-2022-2020-0-01795),
both of which are funded by the Ministry of Science and
ICT, Korea. This work was also partly supported by Samsung
Electronics Co., Ltd.

References

[1] Mark Nowell. Cisco VNI Forecast update. https:
//waw.ieee802.0rg/3/ad_hoc/bwa2/public/
calls/19_0624/nowell_bwa_01_190624.pdf,
2021.

[2] Daniel Kang, John Emmons, Firas Abuzaid, Peter Bailis,
and Matei Zaharia. NoScope: Optimizing Neural Net-
work Queries over Video at Scale. In PVLDB, 2017.

[3] Michael R Anderson, Michael Cafarella, German Ros,
and Thomas F Wenisch. Physical Representation-Based
Predicate Optimization for a Visual Analytics Database.
In ICDE, 2019.

[4] Tiantu Xu, Luis Materon Botelho, and Felix Xiaozhu
Lin. VStore: A Data Store for Analytics on Large
Videos. In EuroSys, 2019.

https://www.ieee802.org/3/ad_hoc/bwa2/public/calls/19_0624/nowell_bwa_01_190624.pdf
https://www.ieee802.org/3/ad_hoc/bwa2/public/calls/19_0624/nowell_bwa_01_190624.pdf
https://www.ieee802.org/3/ad_hoc/bwa2/public/calls/19_0624/nowell_bwa_01_190624.pdf

[5] Yao Lu, Aakanksha Chowdhery, Srikanth Kandula, ,
and Surajit Chaudhuri. Accelerating Machine Learning
Inference with Probabilistic Predicates. In SIGMOD,
2018.

[6] Daniel Kang, Ankit Mathur, Teja Veeramacheneni, Peter
Bailis, and Matei Zaharia. Jointly Optimizing Prepro-
cessing and Inference for DNN-Based Visual Analytics.
In PVLDB, 2020.

[7] Nick Koudas, Raymond Li, and Ioannis Xarchakos.
Video Monitoring Queries. In ICDE, 2020.

[8] Daniel Kang, Peter Bailis, and Matei Zaharia. Blazelt:
Optimizing Declarative Aggregation and Limit Queries
for Neural Network-Based Video Analytics. In PVLDB,
2019.

[9] Kevin Hsieh, Ganesh Ananthanarayanan, Peter Bodik,
Shivaram Venkataraman, Paramvir Bahl, Matthai Phili-
pose, Phillip B. Gibbons, and Onur Mutlu. Focus: Query-
ing Large Video Datasets with Low Latency and Low
Cost. In OSDI, 2018.

[10] Ioannis Xarchakos and Nick Koudas. SVQ: Streaming
Video Queries. In SIGMOD, 2019.

[11] Jingjing Wang and Magdalena Balazinska. Deluceva:
Delta-Based Neural Network Inference for Fast Video
Analytics. In SSDBM, 2020.

[12] Yuhao Zhang and Arun Kumar. Panorama: A Data
System for Unbounded Vocabulary Querying over Video.
In PVLDB, 2020.

[13] Favyen Bastan, Oscar Moll, and Sam Madden. Vaas:
Video Analytics At Scale. In PVLDB, 2020.

[14] Junchen Jiang, Ganesh Ananthanarayanan, Peter Bodik,
Siddhartha Sen, and Ion Stoica. Chameleon: Scalable
Adaptation of Video Analytics. In SIGCOMM, 2018.

[15] Maureen Daum, Brandon Haynes, Dong He, Amrita
Mazumdar, and Magdalena Balazinska. TASM: A Tile-
Based Storage Manager for Video Analytics. In ICDE,
2021.

[16] NVIDIA. DeepStream SDK. https://developer.
nvidia.com/deepstream-sdk, 2021.

[17] NVIDIA. Video Codec SDK. https://developer.
nvidia.com/nvidia-video-codec-sdk, 2021.

[18] Thomas Wiegand, Gary J Sullivan, Gisle Bjontegaard,
and Ajay Luthra. Overview of the H.264/AVC Video
Coding Standard. TCSVT, 2003.

[19] Alex Bewley, Zongyuan Ge, Lionel Ott, Fabio Ramos,
and Ben Upcroft. Simple online and realtime tracking.
In ICIP, 2016.

[20] Mohammadsadegh Alizadeh and Mohammad Shar-
ifkhani. Compressed Domain Moving Object Detection
Based on CRF. TCSVT, 2020.

[21] Wei Zeng, Jun Du, Wen Gao, and Qingming Huang.
Robust Moving Object Segmentation on H.264/AVC
Compressed Video Using the Block-Based MRF Model.
Real-Time Imaging, 2005.

[22] R. Babu, Kalpathi Ramakrishnan, and S.H. Srinivasan.
Video Object Segmentation: A Compressed Domain
Approach. TCSVT, 2004.

[23] Marcus Laumer, Peter Amon, Andreas Hutter, and An-
dré Kaup. Moving Object Detection in the H.264/AVC
Compressed Domain. APSIPA, 2016.

[24] Chris Poppe, Sarah De Bruyne, Tom Paridaens, Peter
Lambert, and Rik Van de Walle. Moving Object Detec-
tion in the H.264/AVC Compressed Domain for Video
Surveillance Applications. Journal of Visual Communi-
cation and Image Representation, 2009.

[25] Dien Van Nguyen and Jaehyuk Choi. Toward Scalable
Video Analytics Using Compressed-Domain Features
at the Edge. Applied Sciences, 2020.

[26] Chao-Yuan Wu, Manzil Zaheer, Hexiang Hu, R Man-
matha, Alexander J Smola, and Philipp Krihenbiihl.
Compressed Video Action Recognition. In CVPR, 2018.

[27] Shiyao Wang, Hongchao Lu, Pavel Dmitriev, and Zhi-
dong Deng. Fast Object Detection in Compressed Video.
In ICCV, 2019.

[28] Radu Sibechi, Olaf Booij, Nora Baka, and Peter Bloem.
Exploiting Temporality for Semi-Supervised Video Seg-
mentation. In ICCV, 2019.

[29] Haichen Shen, Seungyeop Han, Matthai Philipose, and
Arvind Krishnamurthy. Fast Video Classification via
Adaptive Cascading of Deep Models. In CVPR, 2017.

[30] Seung-Hwan Bae and Kuk-Jin Yoon. Robust Online
Multi-Object Tracking Based on Tracklet Confidence
and Online Discriminative Appearance Learning. In
CVPR, 2014.

[31] Min Yang and Yunde Jia. Temporal Dynamic Appear-
ance Modeling for Online Multi-Person Tracking. CVIU,
2016.

https://developer.nvidia.com/deepstream-sdk
https://developer.nvidia.com/deepstream-sdk
https://developer.nvidia.com/nvidia-video-codec-sdk
https://developer.nvidia.com/nvidia-video-codec-sdk

[32] Yu Xiang, Alexandre Alahi, and Silvio Savarese. Learn-
ing to Track: Online Multi-Object Tracking by Decision
Making. In ICCV, 2015.

[33] Alex Bewley, Vitor Guizilini, Fabio Ramos, and Ben
Upcroft. Online Self-Supervised Multi-Instance Seg-
mentation of Dynamic Objects. In ICRA, 2014.

[34] Wongun Choi. Near-Online Multi-Target Tracking with
Aggregated Local Flow Descriptor. In ICCV, 2015.

[35] Ju Hong Yoon, Ming-Hsuan Yang, Jongwoo Lim, and
Kuk-Jin Yoon. Bayesian Multi-Object Tracking Using
Motion Context from Multiple Objects. In WACYV, 2015.

[36] Alex Bewley, Lionel Ott, Fabio Ramos, and Ben Upcroft.
Alextrac: Affinity Learning by Exploring Temporal Re-
inforcement within Association Chains. In ICRA, 2016.

[37] NVIDIA. Gst-nvinfer. https://docs.nvidia.com/
metropolis/deepstream/dev-guide/text/DS_
plugin_gst-nvinfer.html, 2021.

[38] Webcam Lemmer. Binnenhaven lemmer,
youtube. https://www.youtube.com/watch?
v=NyzxJIMiWxDeo, 2019.

[39] See Jackson Hole. Jackson hole wyoming usa town
square live cam, youtube. https://www.youtube.
com/watch?v=1EiC9bvVGnk, 2018.

[40] KABUKICHO. Shinjuku kabukicho, youtube. https:
//www.youtube.com/watch?v=EHkMJfMw70U, 2020.

[41] StarDot Technologies. Taiwan new taipei city,
youtube. https://www.youtube.com/watch?v=
INR-B7FwhS8, 2020.

[42] Yuangi Li, Arthi Padmanabhan, Pengzhan Zhao, Yufei
Wang, Guoqing Harry Xu, and Ravi Netravali. Reducto:
On-Camera Filtering for Resource-Efficient Real-Time
Video Analytics. In SIGCOMM, 2020.

[43] M. Kilger. A Shadow Handler in a Video-Based Real-
Time Traffic Monitoring System. In WACV, 1992.

[44] Kostia Robert. Video-Based Traffic Monitoring at Day
and Night Vehicle Features Detection Tracking. In ITSC,
20009.

[45] Tariq Abdullah, Ashiq Anjum, M. Fahim Tariq, Yusuf
Baltaci, and Nikos Antonopoulos. Traffic Monitoring
Using Video Analytics in Clouds. In UCC, 2014.

[46] L. Snidaro, C. Micheloni, and C. Chiavedale. Video
Security for Ambient Intelligence. SMC, 2005.

[47] Minghu Wu, Xiang Li, Cong Liu, Min Liu, Nan Zhao,
Juan Wang, Xiangkui Wan, Zheheng Rao, and Li Zhu.
Robust Global Motion Estimation for Video Security
Based on Improved K-Means Clustering. JAIHC, 2019.

[48] Niels Haering, Péter L. Venetianer, and Alan Lipton.
The Evolution of Video Surveillance: An Overview.
MVA, 2008.

[49] P. Chung, Yung-Ming Kuo, Chin-De Liu, and Chun-
Rong Huang. Video Analysis Boosts Healthcare Effi-
ciency and Safety. Spie Newsroom, 2011.

[50] Jongse Park, Emmanuel Amaro, Divya Mahajan,
Bradley Thwaites, and Hadi Esmaeilzadeh. AxGames:
Towards Crowdsourcing Quality Target Determination
in Approximate Computing. In ASPLOS, 2016.

[51] Jiashen Cao, Ramyad Hadidi, Joy Arulraj, and Hyesoon
Kim. THIA: Accelerating Video Analytics using Early
Inference and Fine-Grained Query Planning. arXiv,
2021.

[52] Brandon Haynes, Maureen Daum, Dong He, Amrita
Mazumdar, Magdalena Balazinska, Alvin Cheung, and
Luis Ceze. VSS: A Storage System for Video Analytics.
In SIGMOD, 2021.

[53] Neil Agarwal and Ravi Netravali. Boggart: Accelerat-
ing Retrospective Video Analytics via Model-Agnostic
Ingest Processing. In arXiv, 2021.

[54] Alex Poms, Will Crichton, Pat Hanrahan, and Kayvon
Fatahalian. Scanner: Efficient Video Analysis at Scale.
TOG, 2018.

[55] Haoyu Zhang, Ganesh Ananthanarayanan, Peter Bodik,
Matthai Philipose, Paramvir Bahl, and Michael J. Freed-
man. Live Video Analytics at Scale with Approximation
and Delay-Tolerance. In NSDI, 2017.

[56] Ran Xu, Jinkyu Koo, Rakesh Kumar, Peter Bai, Subrata
Mitra, Sasa Misailovic, and Saurabh Bagchi. VideoChef:
Efficient Approximation for Streaming Video Process-
ing Pipelines. In ATC, 2018.

[57] Mengwei Xu, Tiantu Xu, Yunxin Liu, and Felix Xiaozhu
Lin. Video Analytics with Zero-streaming Cameras. In
ATC, 2021.

[58] Orachat Sukmarg and Kamisetty R Rao. Fast Object
Detection and Segmentation in MPEG Compressed Do-
main. In TENCON, 2000.

[59] Fatih Porikli, Faisal Bashir, and Huifang Sun. Com-
pressed Domain Video Object Segmentation. TCSVT,
2009.

https://docs.nvidia.com/metropolis/deepstream/dev-guide/text/DS_plugin_gst-nvinfer.html
https://docs.nvidia.com/metropolis/deepstream/dev-guide/text/DS_plugin_gst-nvinfer.html
https://docs.nvidia.com/metropolis/deepstream/dev-guide/text/DS_plugin_gst-nvinfer.html
https://www.youtube.com/watch?v=NyzxJMWxDeo
https://www.youtube.com/watch?v=NyzxJMWxDeo
https://www.youtube.com/watch?v=1EiC9bvVGnk
https://www.youtube.com/watch?v=1EiC9bvVGnk
https://www.youtube.com/watch?v=EHkMjfMw7oU
https://www.youtube.com/watch?v=EHkMjfMw7oU
https://www.youtube.com/watch?v=INR-B7FwhS8
https://www.youtube.com/watch?v=INR-B7FwhS8

[60]

[61]

[62]

[63]

Fernando Bombardelli, Serhan Giil, Daniel Becker,
Matthias Schmidt, and Cornelius Hellge. Efficient Ob-
ject Tracking in Compressed Video Streams with Graph
Cuts. In MMSP, 2018.

Sayed Hossein Khatoonabadi and Ivan V. Bajic. Video
Object Tracking in the Compressed Domain Using
Spatio-Temporal Markov Random Fields. TIP, 2013.

Qiankun Liu, Bin Liu, Yue Wu, Weihai Li, and Neng-
hai Yu. Real-Time Online Multi-Object Tracking in
Compressed Domain. IEEE Access, 2019.

Mark Zhao, Niket Agarwal, Aarti Basant, Bugra Gedik,
Satadru Pan, Mustafa Ozdal, Rakesh Komuravelli, Jerry
Pan, Tianshu Bao, Haowei Lu, Sundaram Narayanan,
Jack Langman, Kevin Wilfong, Harsha Rastogi, Carole-
Jean Wu, Christos Kozyrakis, and Parik Pol. Understand-
ing Data Storage and Ingestion for Large-Scale Deep
Recommendation Model Training: Industrial Product.
In ISCA, 2022.

	Introduction
	Background and Motivation
	Retrospective Analytics
	Video Decoding: the New Bottleneck
	Block-based Video Coding

	Overview of CoVA
	Compressed Domain Blob Tracking
	Learning to Detect Blobs
	BlobNet
	Tracking Blobs

	Track-aware Frame Selection
	Label Propagation
	Implementation
	Evaluation
	Methodology
	Performance Implication of CoVA
	Accuracy Implication of CoVA
	Sensitivity Study

	Related Work
	Conclusion
	Acknowledgements

